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Abstract—Integration of renewable energy resources (RES)
in the power system is increasing. However, the variability of
PV output poses several challenges in maintaining reliable grid
operation. This variability is a function of several meteorological
variables. An accurate PV forecasting can tackle this issue in
maintaining and scheduling stable grid operation. In this paper,
we conduct a study to analyze the impact of using optimum
combination (feature selection and extraction) of meteorological
features and low dimensional subspace (dimensionality reduction)
on the forecasting accuracy. We also assess and compare the
output of the forecasting model when it is fed with all the input
features present in the dataset with the case when we use low
subspace of the dataset as an input to the model.

I. INTRODUCTION

The transition from high-carbon energy production to green
and sustainable renewable energy production is gaining mo-
mentum. This transition involves integration of RES in the
power grid as a power generation source. Due to this transition,
the installed PV generation capacity is expected to increase by
more than 4 TW by 2025 and 21.9 TW by 2050 [1]. However,
the integration of RES in the power grid brings several chal-
lenges. One of the key challenges is its high variability, which
is typically a function of many factors, for example location,
weather, time and other physical characteristics. Secondly,
this leads to steep ramps in the difference between power
generation and demand.

Estimating and forecasting PV output power has the po-
tential to tackle these issues by enabling energy balancing as
well as maintaining and scheduling reliable grid operation [2].
Moreover, this technique also helps in reducing the integration
and operation cost.

In this work, we compare the output of the forecasting
model when preprocessed and condensed data is fed to the
model with the case when the model is fed with raw or
original data. We assess the impact of using data mining
techniques which focuses on discovery of unknown properties
in data (knowledge discovery in databases) on the forecasting
accuracy.

The paper is organised as follows: Section II addresses
related work on estimating PV output forecasting. Data de-
scription is provided in Section III. Section IV explains

the proposed methodology and presents the result discussion
followed by conclusion in Section V.

II. RELATED WORK

Photovoltaic (PV) output power can be estimated either us-
ing direct or indirect methods. The direct method forecasts the
output of PV directly whereas in the later case it is calculated
by first forecasting the solar irradiance using irradiance data
along with other meteorological variables.

There are several methods that can be used for estimating
and forecasting PV output which includes statistical and time
series based methods, physical methods and hybrid methods.
Artificial neural network, support vector machine and regres-
sion methods lie in the category of statistical and time-series
based methods. Time-series methods develop mathematical
models that can forecast future observations based on avail-
able data. Physical methods uses mathematical equations to
describe the physical state and the dynamic movement of the
atmosphere for example numerical weather prediction (NWP).
Hybrid methods combines different techniques with unique
features to address the limitations of each techniques thus
enhancing the forecasting accuracy. However, these models
are designed for a particular location and PV plant.

Several methods can be found in the literature for predict-
ing PV systems output using meteorological features as an
exogenous input which aim for different time horizons. In
[3] a procedure is proposed using a physical hybrid method
(PHANN) that first identifies the optimum settings in terms
of number of layers, neurons and trials and then perform day-
ahead PV power forecasting using different sets for training
and validation. Authors in [4] present Sun4Cast, a solar power
forecasting system designed by National Center for Atmo-
spheric Research (NCAR) which forecasts the expected sun’s
irradiance and resulting power output from 15 min (nowcast)
to 168h (up to a week ahead and beyond).

The two most commonly used machine learning based
methods ANN (artificial neural network) and SVR (support
vector regression) are applied in [5] for predicting energy pre-
dictions for 15 min, 1h and 24h ahead of time. Authors in [6]
propose an ANN-based ensemble method for performing a day



ahead PV power forecasting and analyses its sensitivity with
respect to input data sets. The results show that the ensemble
error is smaller than error obtained by single trials. The work
in [7] investigates the performance of data-driven methods for
PV forecasting when different preprocessing techniques are
applied to input datasets. In their work, a combination of PCA
and wavelet decomposition showed the most promising results.
Despite of some studies present in the literature dedicated to
data cleaning and control, to the best of our knowledge, there
is no study that directly observes the impact of data quality on
the forecasts which causes interference with data analysis [8].
Moreover, there is lack of investigations evaluating the impact
of using optimum combination (feature selection and extrac-
tion) of meteorological features and using low dimensional
subspace (dimensionality reduction) present in the datasets
on the forecasting accuracy. Therefore, this paper aims to
contribute towards filling the research gaps present in the
related work.

III. INPUT DATASET

The dataset considered in this study is a collection of data
recorded at SolarTech Laboratory, located in the Department
of Energy at Politecnico di Milano, Italy, for the whole year of
2014 with an hourly resolution. In total, 29 PV modules with
capacity of 285 Wp are installed at the geographic location
with latitude 45.502941N and longitude 9.156577E. They are
all oriented with an azimuth angle γ of −6◦30’ (assuming
that 0◦ is the south direction) and a tilt angle of 30◦. The
environmental conditions are monitored by a meteorological
station equipped with a solar irradiation sensor (solarimeter),
temperature, humidity sensors, wind speed/direction sensors
and rain collector. Solar irradiation is measured with three
different sensors, a net radiometer for the measurement of
direct normal irradiance (DNI), two pyranometers for the
measurement of the total and diffuse irradiance on horizontal
plane. The dataset utilized for conducting this study utilizes
the following parameters as presented in Table I.

The dataset contains a wide range of meteorological vari-
ables but only ambient temperature, global horizontal irradia-
tion (GHI) and output PV power is considered. Along with
this, the theoretical irradiation computed according to the
deterministic Clear Sky Radiation Model (CSRM) [9], [10]
is also considered. In addition, the day of the year and the
hour of the day are given. The historical forecasts for the next
day are delivered by a weather service station at 11:00 pm.

IV. METHODOLOGY

A. Preliminary analysis of dataset

The analysis of the dataset begins with an exploratory data
analysis, which is conducted basically to check five important
measures of the dataset which includes count (number of
measurements), mean (average of the measurements), standard
deviation (measure of amount of variance), quartiles of each
feature presented in Table II. Exploratory data analysis can
be considered as a first step towards quality assessment of a
dataset. The very first measure, which is count for each feature,

shows the value 5184, which indicates no missing values in the
dataset; it is followed by mean and standard deviation and the
quartile which gives the information regarding the presence of
any outlier in the dataset. For example the feature S0 has a
mean value of 199.159 and std. deviation value of 275.461,
which indicates the presence of an outlier. Fig. 1 shows the box
plot visualising graphically the outliers present in the dataset
(not included in the box of observations).

Fig. 1. Box plot indicating data distribution through quartiles

B. Correlation of input features

As stated in section III, the dataset under study includes 15
input parameters. Out of which, 3 parameters namely DOY ,
H , Ct are not used, since the objective is to analyze the
association between the meteorological parameters. For the
same we use a bi-variate analysis that measures the strength
of association between two variables and the direction of
the relationship using Pearson’s coefficient of correlation. In
Fig. 2, we can observe the strength of relationship i.e. the
value of correlation coefficient varies between +1 and -1. We
visualize the correlation in a heatmap matrix using the python
library seaborn. The off-diagonal elements show the degree of
reliance of for each pair of variables.

Starting from variable T , it is noticeable that it holds a
positive correlation with Tamb, i.e. 0.94, which shows the
forecasted value of ambient temperature obtained from the
weather station is nearly same as the value recorded at the PV
site. Similarly S0 has a positive correlation with GHImeas,
i.e. 0.91.

Fig. 3 shows the pairwise relationship of variables S0, S30

and GHImeas, validating the accuracy of measured value
recorded at the site with respect to forecasted value obtained
from the weather station. It uses two basic figures histogram
showing the distribution of single variable and scatter plot on
upper and lower triangles showing the relationship between
two variables.

The association of T with other meteorological variables
indicates that it also holds a positive correlation with S0, S30,
Pout and GHIcs (0.46, 0.35, 0.39 and 0.48, respectively).
Correlation with Pout, with value 0.39, is not very significant,



TABLE I
LIST OF AVAILABLE DATA

Group Parameters Units

Deterministic
DOY-Day of the year

H-Hour of the day
GHIcs-Global horizontal irradiation in clear sky condition (Wm−2)

Weather Forecast

T-Ambient temperature (◦C)
S0-Global horizontal irradiance (Wm−2)

S30-Global irradiance at tilted plane (Wm−2)
Ws-Wind speed (ms−1)

Wd-Wind direction (◦)
Pamb-Ambient pressure (hPa)

Ppt-Precipitation (mm)
Cc-Percentage of cloud cover (%)

Ct-Cloud type (Height-low/medium/high)

Measured
GHImeas-Measured global horizontal irradiation (Wm−2)

Tamb-Ambient temperature (◦C)
Pout-Output PV power (kW)

TABLE II
EXPLORATORY DATA ANALYSIS

T S0 S30 Ws Wd Pamb Ppt Cc Pout GHIcs GHImeas Tamb

Count 5184 5184 5184 5184 5184 5184 5184 5184 5184 5184 5184 5184
Mean 15.9212 199.1591 249.990 1.452 165.821 1014.16 0.075 48.415 40.082 233.168 164.482 16.218
Std. Dev. 7.448 275.461 341.399 1.140 112.918 6.438 0.307 44.096 61.209 305.455 246.304 6.522
25 % 9.9 0 0 0.56 71 1010 0 1 0 0 0 11
75 % 21.4 355 448 1.94 270 1018 0 100 64 467.25 273.4 20.98

Fig. 2. Pearson correlation map

which seems reasonable due to the fact that increase in tem-
perature till a certain degree increases the PV output however,
afterwards it starts to decrease. T is negatively correlated with
Pamb due to fact that pressure decreases with an increasing
temperature. S0 shows very small value of correlation with Ws

and Wd i.e. 0.20 and 0.12 respectively which indicates wind
speed has a little influence on global horizontal irradiance.
S0 shows a strong correlation with Pout which shows as the
solar irradiance increases, the power generated by PV plant

Fig. 3. Pairwise relationship of S0, S30 and GHImeas

also increases. S30 shows nearly the same relationship with
the other meteorological variables as S0. Ws is negatively
correlated with Pamb, i.e., when ambient pressure is high wind
speed is usually low. Cc shows positive correlation (0.28) with
Ppt which indicates the chances of rain and snow increase
on an overcast day. Looking at the Pout, it can be observed
that the meteorological variables which possess the positive
correlation include T , S0, S30 and GHIcs.

Conducting the correlation test on the meteorological vari-
ables is an approach to assess their impact on the PV output
estimation. On the basis of the obtained values and its correla-
tion with the target variable, the list of features having positive
degree of association with variable Pout are listed in Table III.



TABLE III
DEGREE OF ASSOCIATION WITH Pout

T S0 S30 GHIcs GHImeas Tamb

0.39 0.88 0.87 0.86 0.98 0.41

C. Principle component analysis

Principle component analysis (PCA) is a technique used
for dimensionality reduction of a dataset. It reduces the
computational complexity of the forecasting model along with
the reducing computational effort. The PCA technique decom-
poses a multivariate dataset in sets of successive orthogonal
components known as principle components (PC). Basically
PCA works with variance-covariance matrix and involves the
steps which are elaborately explained in [11].

In this work PCA is implemented using scikit-learn library,
sklearn.decomposition.PCA.

In Fig. 4, percentage of variance captured by each principle
components is presented. We considered 12 input features
which are mainly meteorological features namely T , S0, S30,
Ws, Wd, Pamb, Ppt, Cc, Ct, GHIcs, GHImeas, Tamb. We
can observe from Table IV, 37% of variance is captured by
the first PC and 14% of variance is captured by second PC.
Cumulatively, around 86% of variance in dataset is captured
by first 6 PCs which indicates PCA does reduce the amount
of input variables. Fig.5 presents the biplot representation of
input features contributing variance on both PC1 and PC2 axis.
GHIcs and GHImeas has the highest contribution to both PC1
and PC2. The input features which contribute highest variance
to PC1 include S0, S30, GHIcs, GHImeas. The scatter plot
in the biplot indicates that the data is spread more on PC1
as compared to PC2 which again indicates the high variance
captured by PC1.

Fig. 4. Percentage of variance captured by principle components

D. Regression methods

The following machine learning models are used to fore-
cast the PV output power: The first three algorithms men-
tioned in Table V are implemented using class linear-
model.LinearRegression from scikit-learn library. For im-
plementing SVR there are different methods present in

Fig. 5. Biplot representation

scikit learn, out of which in this work a gaussian ker-
nel called radial basis function (RBF) is used. Multiple
linear perceptron (MLP) is implemented using the class
sklearn.neuralnetwork.MLPRegressor from scikit learn library.
For conducting the training and testing of the forecast models
the data is split in training and testing dataset. 80% of the
dataset is used for training and rest 20% is used for testing.

E. Performance indicators

To assess the effectiveness of forecast, most commonly used
evaluation metrics are present in the literature [12], [13]. In
this work we used two metrics which are defined here:

1) Normalized mean absolute error - defined as mean
absolute error based on net capacity of the plant C.
Normalizing on the capacity of the plant, may return
low error in case of overcast days or during winters
which does not represent the accuracy of forecast. To
overcome this problem, nRMSE should be considered.

NMAE =
1

N

N∑
i=1

|ppred − pmeas|
C

· 100 (1)

2) Normalized root mean square error - function of model
residuals

nRMSE =
1

max(pmeas)

√√√√ 1

N

N∑
i=1

(ppred − pmeas)
2 ·100

(2)

F. Results and discussion

The implemented learning models are evaluated using
above-mentioned performance metrics. The results report one
more parameter testing time. The results of the evaluation for
five models are shown in Table VI and Table VII. Table VI
presents the results when used all the features as input to
the forecasting models. The model based on SVR shows the
better performance in terms of NMAE and nRMSE, while
linear, lasso and ridge regression model are similar in the test
period and perform a little worse than SVR and MLP model.
In terms of time required for testing the model, linear and ridge
perform the best, lasso regression takes longer. However, the
time spent for testing the model based on SVR takes a bit



TABLE IV
VARIANCE CAPTURED BY PRINCIPLE COMPONENTS

Principle components PC1 PC2 PC3 PC4 PC5 PC6

Variance explained 37.049 14.302 11.723 9.152 7.631 7.064
Cumulative variance explained 37.049 51.351 63.075 72.228 79.859 86.924

TABLE V
SELECTED REGRESSION ALGORITHMS

Algorithms implemented

Linear regression
Lasso regression
Ridge regression
Support vector regression
Multiple linear perceptron

TABLE VI
EVALUATION OF REGRESSION MODELS CONSIDERING ALL THE FEATURES

Models NMAE (%) nRMSE (%) Time (ms)

Linear 5.31 11.58 0.39
Lasso 5.31 11.60 1.30
Ridge 5.31 11.58 0.32
MLP 4.86 11.18 267.01
SVR 4.27 11.49 326.54

long time as compared to other techniques. Table VII presents
the evaluation results when selected features (obtained after
conducting correlation analysis and dimensionality reduction
technique PCA), are used as an input to the forecasting models.
The model based on SVR obtains the best result in terms
of NMAE and nRMSE, however the processing time is still
more than what consumed by other techniques, although it
is half of what the model based on SVR consumed in the
previous case. Overall the MLP model is a better choice
considering both accuracy and testing data. After comparing
both tables we can observe that depending on the location
under study and the regression methods, using less variables as
input to the forecasting models are enough to generate nearly
similar results without affecting the performance. However,
it is necessary to conduct the tests under different climatic
conditions so as to ensure the reliability of the results.

V. CONCLUSION AND FUTURE WORK

In this paper we discussed and presented a detailed ap-
proach to perform analysis of data as part of exploratory

TABLE VII
EVALUATION OF REGRESSION MODELS CONSIDERING THE SELECTED

FEATURES

Models NMAE (%) nRMSE (%) Time (ms)

Linear 5.24 11.60 0.27
Lasso 5.24 11.60 0.52
Ridge 5.24 11.60 0.24
MLP 4.62 11.18 248.07
SVR 4.43 11.51 173.84

data analysis for energy yield production. This includes first
evaluating meteorological parameters and investigating opti-
mum combination of meteorological parameters and features
which impacts forecasting models accuracy. Subsequently we
compared the output of the forecasting model when fed with
all the input features with the case where it is fed with selected
lower subspace of the features. We compared five models,
out of which the MLP-based model shows the best result.
Additionally we observed that using lower subspace resulted
in nearly similar results when compared to using full set of
features. The future work aims at validating the methodology
on different locations having different climatic conditions.
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