
©SciTePress, 2021. This is the author’s version of the work. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or promotional purpose or for creating new collective
works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other
works must be obtained from the copyright holder. The definite version is published at n Proceedings of the
11th International Conference on Simulation and Modeling Methodologies, Technologies and Applications -
SIMULTECH, ISBN 978-989-758-528-9; ISSN 2184-2841, pages 327-334. DOI: 10.5220/0010551603270334.

Bottom-up Job Shop Scheduling with Swarm Intelligence in
Large Production Plants

M. Schranz1 a , M. Umlauft1 b and W. Elmenreich2 c

1Lakeside Labs GmbH, Klagenfurt, Austria
2Institute of Networked and Embedded Systems, University of Klagenfurt, Klagenfurt, Austria

{schranz, umlauft}@lakeside-labs.com, wilfried.elmenreich@aau.at

Keywords:
Swarm Intelligence, Multi-Agent Modeling, Cyber-Physical Systems, Job Shop Scheduling

Abstract:
In production plants organized by the job shop principle, the factory-wide scheduling problem is
NP-hard and can become extremely large. Traditional optimization methods like linear optimiza-
tion reach their limits in these settings due to excessive computation time. Therefore, we propose
this industrial setting as a novel field of application for swarm intelligence using bottom-up al-
gorithms that do not require the infeasible calculation of an overall solution but depend only on
local information. We consider the example of the semiconductor industry producing logic and
power integrated circuits where a diverse range of highly specialized but low volume products are
fabricated in the same plant. This paper shows how to select and model swarm members, swarms,
and their interactions for use in real-world production plants. There are multiple possibilities for
the modeling of the agents: a swarm member could be a single machine or a set of machines
(workcenter), a product or group of products of the same/similar type, or a more abstract agent
like a process. In particular, we consider criteria for selecting appropriate swarm members and
potential candidate swarm algorithms inspired by hormones and ants.

1 Introduction

Scheduling in production plants organized by
the job shop principle is a challenging problem in
Industry 4.0. The main issues are the given con-
straints (e.g., from machines) together with the
global objective in production plants (e.g., maxi-
mizing of machine utilization, throughput time,
delivery reliability, or minimizing the work in
progress (WIP)). High product diversity together
with historical growth of the industrial plant in-
crease complexity even further.

A typical example for such a highly dy-
namic process is the production of integrated cir-
cuits (ICs) in the semiconductor industry (Geng,
2018). In particular, we consider the so-called
front end of line processing where the wafers are
processed to create the ICs. For this paper, we
consider the requirements of the leading semi-
conductor manufacturer Infineon Technologies1.
Between 400 and 1200 different stations need to
be scheduled in such a production plant (fab).
Typical process steps include lithography, dop-
ing, oxidation, etching, and measuring (Geng,

a https://orcid.org/0000-0002-0714-6569
b https://orcid.org/0000-0000-0000-0000
c https://orcid.org/0000-0001-6401-2658
1https://www.infineon.com

2018). They typically produce more than 1500
different products in around 300 different pro-
cess steps. These processes are characterized by
a multitude of technological and logistical bound-
ary conditions, like, e.g., equipment tooling, the
need for secondary resources, and constraints like
time couplings and batch processing. Further-
more, the chain of necessary process steps con-
tains loops. The job shop scheduling problem is
NP-hard (Garey et al., 1976). Existing dispatch-
ing rules are based on heuristics. Due to excessive
computation time, Linear optimization methods
can not cope with the large, and dynamic search
space (Lawler et al., 1993). These methods can
only be used on subsets of the plant, and thus, do
not exploit the full optimization potential. There-
fore, bottlenecks cannot be prevented, and WIP
waves are generated. So far, no optimal solution
for job shop scheduling has been developed us-
ing linear optimization that can be computed in
polynomial time (Zhang et al., 2009).

Other than using swarm intelligence as an
optimization algorithm (Ghumare et al., 2015),
we apply a novel approach modeling the produc-
tion plant as a self-organizing system of agents
that work together, each equipped with a set of
local rules. A self-organizing system is highly
non-linear because of feedback relations. Thus,

https://www.infineon.com


it can adapt to changing environmental condi-
tions (Heylighen, 2001), e.g., tool downs. We
consider nature-inspired swarm algorithms, since
many of them are able to produce near-optimal
solutions for NP-hard problems in feasible com-
putation time. Thus, the problem is transformed
from finding an overall solution to defining a dis-
tributed algorithm that finds the solution from
the bottom up. The considered production plant
requirements match the advantages of swarm in-
telligence: adaptivity, robustness, and scalability.
In this paper we analyze the problem setting in
such a highly complex production plant (Sec. 2),
introduce how swarm modeling could be used to
address the problem (Sec. 4), show two examples
of swarm algorithms and their application in this
setting (Sec. 5), and discuss our approach in com-
parison to the related work in the field (Sec. 6).

2 Semiconductor Fab Setting

Semiconductor production uses an industry
standard of 25 wafers that are combined to form
a lot and then transported in so-called FOUPs2

or hordes between the individual process steps.
Every lot has a transponder with a unique iden-
tification number used to track a lot through the
fab. Lots follow a specific recipe, which prescribes
which process steps to take in which order but
not the concrete machine on which to perform
the required next process step. Machines can
be single wafer tools which work wafer by wafer,
or batch-oriented and process several lots at once.
Machines are often spread across several factory
buildings. Nevertheless, transport times between
machines are negligible while workload and wait-
ing times before machines are the determining
factor. A set of machines which can run one or
more similar process classes form a workcenter.
These sets of machines are exhaustive and dis-
junct. A dedication matrix specifies which pro-
cesses are allowed on which machines. Load in a
workcenter is distributed via a solver which cal-
culates scheduling and local optimization for the
workcenter for a week in advance.

In the considered production plant about 10%
of the machines have a low utilization (e.g., 60%
or even 30%), because they are only used for some
special products. There is a difference between
utilization of a workcenter and the utilization of
a machine. For example, for a specific machine a
utilization of 80% is very high, while for a work-
center 80% would be quite low.

2Front Opening Unified Pod

3 Problem Statement

Currently, optimization per workcenter works
well, but its influence on the following workcen-
ters and machines is unclear and does not auto-
matically generate a global optimum. It is not un-
derstood how local optimization affects the over-
all efficiency of the fab or whether optimizing one
workcenter will create bottlenecks in others. Ex-
isting dispatching rules are based on heuristics.
Since job shop scheduling is an NP-hard problem
and the number of involved machines and lots is
considerably large, optimization can only be cal-
culated for a subset of the machines in the fab
(e.g., within a workcenter). Bottlenecks arise dy-
namically due to a wide variety of reasons, e.g.,
tool downs, or changed product mix. Downtimes
always cause capacity loss. Bottlenecks cannot be
prevented, and generate WIP waves.

Different machine types have different logistic
requirements (batch vs. single processing). Espe-
cially after a batch process, lot arrival times vary
considerably (because lots leave the process in
batches) while theory suggests that for single-step
processing machines high utilization is only pos-
sible when arrival times are uniform (Stidham Jr,
2002). The main challenge is that this switch be-
tween batch and single-step processing introduces
so-called WIP waves between machines.

Lots that traverse a loop of machines several
times can add to the challenge: how to priori-
tize a lot against other lots of the same product
which are one or several cycles ahead? If only
the lots with the nearest due dates are processed,
the lots with later due dates might violate their
time coupling requirements. If too many of the
same product with later due dates are prioritized,
the products with the nearest due dates might
violate theirs. In the current setting, lots of the
same product are spread over the week when in-
troduced into the fab to avoid WIP waves.

4 Swarm Modeling of the Problem

To model the production plant as a swarm,
we consider a set of potential swarm members
and their characteristics. In this consideration,
the swarm can be homogeneous (agents of the
same type, e.g., lots), or heterogeneous (agents
of different types, e.g., lots and machines). Fur-
thermore, we identify several criteria to determine
whether an entity is eligible to be a swarm mem-
ber in the fab according to the related work (see
Sec. 6 for more details). A swarm member should
be able to work in a swarm per se, thus, a rea-
sonable number of other swarm members should



exist (e.g., the lithography workcenter only exists
once in the fab and on its own would not represent
a good swarm member), show a suitable level of
abstraction to be modeled, detect dynamic infor-
mation from the (local) environment, react to in-
formation from the local neighborhood (e.g., take
decisions), and be plausible and understandable
to enable trust in the proposed solution.

4.1 Challenges

When considering the introduction of a
swarm-based algorithm in a production plant, the
following challenges arise:
What should be modeled as agents and what is
the right level of abstraction? A swarm consists
of agents that interact with each other. In our
case, a swarm member could be a machine, a lot
or a process representing an abstract entity. Mod-
elling a swarm algorithm requires an early deci-
sion on what entity should be used as a swarm
member. As described in the beginning of Sec. 4
we consider several criteria. Nevertheless, the
level of abstraction is not always clear. For exam-
ple, if we consider machines as agents, we could
also map a higher abstraction level and consider
workcenters as agents, or we map an abstraction
level lower and use process steps as agents.
How to deal with inhomogeneities among enti-
ties? Intrinsically, machines are heterogeneous
by themselves. There is no unified type of a spe-
cific machine, and even on nearly identical ma-
chines there is the possibility of defining differ-
ent processes. Thus, each machine has a set of
different parameters that influence its operation.
The same holds for lots, as they have different
recipes and thus, different requirements in their
route through the fab.
How to implement the necessary swarm communi-
cation paradigms in the setting of the production
plant? Swarm algorithms typically implement
one of two communication paradigms—direct
communication where agents send messages or in-
direct communication (stigmergy), where agents
leave information in the environment. The enti-
ties of the fab are already represented as digital
twins in the central fab computer system. There-
fore, agent communication can easily be imple-
mented as local messages within the computer
system or in local memory for stigmergy. As a
result, it is not necessary to equip machines or
lots with additional computational intelligence or
communication devices.
How to implement a solution on top of a working
environment? Current fab mechanisms include a

number of different priority classes (e.g., hot lots,
developer lots). Generally, lots with priority class
“hot” will sometimes be single processed due to
time constraints, and developer lots will be sin-
gle processed because new recipes/processes are
tried out on them. Nearly 20% of lots are devel-
oper lots. They are used for research and develop-
ment, machine control, and maintenance. Thus,
it might not be possible to combine them with
others into a swarm. The majority of these prior-
ity classes is historically driven. To model the lots
as swarm members, the priority class is an impor-
tant parameter. Nevertheless, by the introduc-
tion of swarm-based local rules and interactions,
the priority classes could be reduced to a single
one: the due date. This would free the system
from reserving time for hot lots, but the question
is if the treatment of hot lots is still satisfactory
under such an approach. Another important con-
sideration are time-coupled lots: if these can not
be processed by the next machine within a cer-
tain time frame, the lots would be damaged and
need to be discarded. To take this into account,
the urgency for time-couple lots needs to be ad-
ditionally considered.
How to validate the approach? Testing and pre-
dicting the performance of a given algorithm is
difficult. Although historical data exists for each
lot (e.g., the logical transactions from machines
including move-in and move-out operations), it is
hard to get WIP and dedication matrix data that
would allow predictions for new rules. Further-
more, the performance of the manufacturing pro-
cess is also dependent on external factors like ma-
chine downs, operator sickness, or even weather
conditions like lightning strikes.

4.2 Swarm Member Candidates

The model for the problem consists of a pro-
duction plant with machines, queues, processes,
lots, and recipes. The production plant P con-
tains several sets or workcenters of machines
Wm = {Mm

1 ,M
m
2 , . . . }, where m is the machine

type. Each machine Mm
i has a queue Qm

i Ev-
ery machine in a machine set/workcenter Wm can
perform a process Pm.

A set of lots L = {lt1, lt2, . . . } need to be pro-
cessed in the plant, where t is the product type.
Each product type t is defined by a recipe Rt

which prescribes the sequence of processing steps
necessary to manufacture this product. The lot
ltn can choose which of the suitable machines Mm

i

to use for each necessary process step Pm.
Therefore, the recipes imply a directed graph



G = (V,E) of possible movements between the
machines of the plant, where the nodes V consist
of all machines Mm

i and the edges E are defined
between two machines Mm

i and Mp
j if there exists

a lot ltn with a recipe Rt containing processes Pm

and P p in direct succession. A route R is an
ordered list of machines which can execute the
corresponding processes in the recipe. The taken
routes are a sub-graph of G with Gr ⊆ G.

Out of this formal definition, we identified a
number of possible components in a fab that can
act as swarm members.

Machines M know their processes and their
utilization. There are many different machines in
the fab that could form either multiple cooper-
ating homogeneous swarms, or a heterogeneous
swarm with different capabilities. The neighbor-
hood is locally and dynamically defined by the
recipes of the incoming and outgoing lots. Ma-
chines can take decisions locally and can, e.g.,
re-order their queue and thereby select which lot
to process next. Furthermore, they can commu-
nicate with other machines, and could ask for lots
of a specific processing type.

Workcenters W , with W ⊂ M have at-
tributes very similar to single machines, because
a workcenter is simply a set of related machines.
It can calculate when lots will be processed inter-
nally and can use makespan information (the time
that elapses from the start to the end of a lot’s
production) to calculate when the lots currently
being processed will be finished.

Lots L can also form either homogeneous (lots
of the same product type), or heterogeneous (lots
of multiple product types) swarms. Lots follow
a specific recipe, which prescribes which process
steps to take in which order but not the concrete
machine on which to perform the required next
process step. As there are typically multiple ma-
chines which can perform the same process, lots
could decide which machine to take next. The
concrete path taken through the machines of the
fab is called a route. Typically, lots of similar
product types will share parts of their recipes.
Given a stable load situation in the machine park,
lots of the same product type and lots of similar
product types can therefore be expected to share
parts of their routes. Furthermore, lots could ma-
nipulate their own prioritization.

Processes P could be virtual swarm mem-
bers. They see all machines that they can po-
tentially be run on plus the current and total
workload. Additionally, they could forecast the
workload, the times for re-tooling, and have in-
formation on batching requirements.

5 Candidate Algorithms

In the following we present two candidate al-
gorithms for the job shop problem using bottom-
up approaches. They have been selected because
they present an embodied approach, thus, each
agent in the algorithm can be modeled from a
“real” entity in the production plant. These
swarm members are already represented as dig-
ital twins. For the swarm approach we can add
supporting attributes (e.g., pheromones), and ob-
serve the virtual, but local environment of the se-
lected swarm members. Thus, instead of a global
computation of the overall fab, the digital twins
can work and interact with local information.

5.1 Hormone Algorithm

In a semiconductor fab, a network for propa-
gating an artificial hormone can be constructed
by the planned processing steps (recipes) of lots.
An artificial hormone system can help to express
the urgency of a lot and the need for new lots
at a machine type. Artificial hormone produced
at machines can diffuse through the production
system via the lot recipes. Lots act as swarm
members that are attracted by hormone. The ap-
proach is inspired by the usage of artificial hor-
mones to reorganize agents (Sobe et al., 2015)
in a self-organizing systems for technical applica-
tions (Elmenreich and de Meer, 2008; Elmenreich
et al., 2009). For implementation, the artificial
hormone system is realized as a software layer
spread over the processing queues of all machines
in a fab. Machines are assumed to have artificial
glands that can produce hormone. The hormone
algorithm for optimizing lot processing in a semi-
conductor fab can be decomposed into six mech-
anisms:
Production: Machines Mm

i produce hormone
hmi according to the number of lots in their pro-
cessing queue. Machine that are about to run
out of lots produce more hormone. Each machine
set/workcenter Wm has its own type of hormone.

Hm =
1

|Qm
i |+ β

, (1)

where Hm
i is the hormone corresponding to work-

center Wm at machine Mm
i , β is a smoothing fac-

tor and |Qm
i | is the number of waiting lots in the

queue for machine Mm
i .

Evaporation: Hormone levels at an agent evap-
orate exponentially with a given rate α:

Hm
i,t+1 = Hm

i,t · (1− α) (2)



where Hm
i,t+1 and Hm

i,t, represent the state of hor-
mone at machine Mm

i before and after a discrete
evaluation step.
Diffusion: Hormone diffuses from machine to
machine based on lot’s recipes that connect the
machines. Hormone diffuses upstream, i.e. from a
later machine in a recipe to a machine that comes
before that machine in the recipe. Thus, hormone
diffusion follows the transpose graph of G, GT . If
there is an edge in GT between process Pm and
a process P p (P p being the predecessor of Pm

in a recipe Rt), the amount of hormone moving
upstream from machine Mm

i is defined by

∆H = Hm
i · γ (3)

Hm
i − =∆H (4)

where γ is a parameter setting the motility of
hormone. The link strength lm, p between two
machines Mm

i and Mp
j is equivalent to the num-

ber of recipes Rt containing processes Pm and
P p in direct succession. Each machine connected
upstream receives a proportional part of the up-
stream hormone:

Hp
j + =∆H

lm,p∑
r l

m,r
, (5)

where
∑

r l
m,r represents the sum of all upstream

links from Pm.
Diffusion through lot movement: Incoming
lots following an edge of G generate a flow of hor-
mone back to where the lots came from via the
corresponding backwards edge in the transpose
graph of G.

∆H = Hm
i · δ (6)

Hm
i − = δH (7)

Hp
j + = δH (8)

where ∆H defines the amount of hormone that
moves with the lot, calculated from the amount
of available hormone Hm

i at a machine Mm
i . The

lot moved from machine Mm
i to Mp

j , thus adding

to Hm
j . Mp

j can be also a machine from a differ-
ent workcenter than Wm.
Attraction: Lots are attracted by hormone, if
those match the machines types required for their
next steps in their recipe. The amount of attrac-
tion decreases exponentially based on the number
of steps ahead. The attraction force is applied to
lots waiting in a processing queue Qm

i and can
make an attracted lot move forward in the queue.

attraction =
∑
i,m

Hm
i · εn, (9)

where Hm
i is the hormone amount at a machine

that is n edges away and ε is a factor < 1 defin-
ing the degradation of the hormone attraction
over edge distance in graph G. Attraction is
used to reorder waiting lots, but other factors
such as remaining raw process time and remain-
ing process cycle time also influence lot urgency.
The diffusion by lots is a self-reinforcing process
that is balanced by hormone production based
on the shortest processing queues. In this way,
a path through the system where lots are pro-
cessed quickly—the paths we would like to have
in a productive system—is marked with hormone.
Each mechanism comes with a parameter indicat-
ing the strength of each part, that is evaporation
rate α, hormone production factor β, upstream
diffusion factor γ, hormone distribution factor δ
and attraction factor ε. A possible configuration
of these parameters is stated in (Elmenreich et al.,
2021). Due to the interaction between each of the
mechanisms forming feedback control loops, the
algorithm can operate with a broad set of possible
parameter settings.

5.2 Ant Algorithm

Ant algorithms are inspired by the foraging
behavior of ants which can find near-optimal
paths to food sources without global knowledge
by marking trails with pheromones. They have
been successfully applied to route optimization of
the traveling salesman problem (Caro and Dorigo,
1998; Di Caro et al., 2005). As shown in Sec. 4.2
the plant can be seen as a graph G = (V,E)
and lot progression through the fab as a routing
problem. Lots are mapped to ants and machines
are mapped to network nodes. The approach can
then be decomposed as follows:
Trail following: Lots choose the next machine
Mm

i probabilistically out of the set of possible
machines Wm based on the local pheromone val-
ues for that machine and a local heuristic of its
current load (ie. the queue length of the machine)
as shown in Equation 10.

Pi,j =
τi,j,d + αηi,j

1 + α(Ni − 1)
(10)

with
η = 1− qi,j∑

q
(11)

the relative queue length of the machine and Ni

the number of possible machines. Instead of a
“destination node” as in the original AntNet vari-
ant of the algorithm, we use the next following
step of the recipe for the destination d. Thus, a



machine with a high amount of pheromone and a
short queue length becomes more attractive for a
lot. The influence of pheromone vs. local heuris-
tic can be adjusted via a parameter.
Trail laying: Pheromone values are updated
after a lot has progressed. In distributed ant
routing algorithms for packet networks, this is
done by sending a backward ant to travel the
same route in reverse after the original ant has
reached its final destination. Backward ants up-
date the pheromone values at each hop according
to the time it took the original ant to traverse
the respective link. In our approach, pheromone
updates are triggered not by sending a “reverse
lot” but rather by communication between ma-
chines. To facilitate the pheromone update, each
lot keeps a memory of the time it took to traverse
an edge—i.o.w. how long it took to wait in the
machine’s queue. Since complete production of
a lot takes weeks, backward communication and
pheromone update is performed as soon as a lot
has traversed a workcenter. For a chosen machine
Mm

x the pheromone value is updated as follows:

τx,d ← τx,d + r(1− τx,d) (12)

while for all potential machines Mm
n which were

not chosen, the pheromone values are updated
according to Equation 13

τn,d ← τn,d − rτn,d (13)

with reinforcement r depending on the time the
lot took to traverse this “hop” and the current
congestion status according to the local heuristic:

r ≡ r(T,Mm
i ) (14)

Evaporation: At regular time intervals,
pheromone values are evaporated with a rate p
so that trails which have gotten worse (e.g., due
to machine downs) are removed (Equation 15).

τ(t+ 1) = τ(t)(1− p) (15)

6 Related Work

Production scheduling aims at arranging and
controlling work and workloads in a produc-
tion process so that a given optimality crite-
rion, such as minimizing makespan, mean flow
time, idle machine time, or total tardiness is ad-
dressed (Blazewicz et al., 2019). It is an NP-hard
problem, thus belonging to the class of hardest
problems according to computational complexity
theory (Garey et al., 1976). To address large
problem sizes, various techniques are suggested

including differential evolution algorithms (Yuan
and Xu, 2013), genetic algorithms and tabu
search (Li and Gao, 2016), large-neighborhood
search (Pacino and Van Hentenryck, 2011), or a
defining scheduler upon general purpose declara-
tive problem solvers (Da Col and Teppan, 2016).
Although several approaches already exist, they
typically make the calculations centrally and be-
forehand (similar to existing linear optimization
approaches).

In swarm intelligence complex optimizations
problems are solved by using local rules inspired
by swarms of birds, fish, and ants (Almufti et al.,
2019; Hassanien and Emary, 2018). When mod-
eling a swarm, the choice of agents in the sys-
tem needs to be defined carefully. The two main
aspects comprise the agent’s properties (internal
and external states) and the agent’s behavior. In
our example, the internal or external states would
describe, e.g., the agent’s current and next pro-
cess step, process time, or utilization. Through
its behavior, the agent can change states from
the environment, other agents, or the internal
state (Schranz et al., 2020). Furthermore, we can
differentiate between three types of agents: mo-
bile, stationary or connecting agents (Wilensky
and Rand, 2015). How to choose an agent for a
swarm is application-specific. Nevertheless, (van
Ast et al., 2008) present a swarm framework to
formally define dynamic agents, their neighbor-
hood, environment, and interactions. (Schranz
et al., 2018) model a swarm member by focusing
on cyber-physical systems and their local mem-
ory (e.g., the current x and y position, avail-
able energy), behaviour, physical aspects, secu-
rity, and human interaction interfaces using the
modeling tools Modelio and FREVO (Sobe et al.,
2012) to evolve a swarm algorithm solving it.
Swarm algorithms are of high interest for the do-
main of job shop scheduling as it is well-known
that optimal solutions cannot be found in fea-
sible time with linear optimization (Zhang et al.,
2009). Nature-inspired algorithms have been con-
firmed to be excellent in addressing complex op-
timization problems in job shop scheduling (Gao
et al., 2019). The majority of related work on
the application of swarm concepts in produc-
tion scheduling build upon particle swarm opti-
mization (Ghumare et al., 2015). Additionally,
several contributions are using the artificial bee
colony algorithm (Sharma and Pant, 2017). Dig-
ital hormone models for self-organization have
been suggested in (Shen et al., 2002) and have
been applied to task allocation problems (Renteln
et al., 2008; Brinkschulte et al., 2007), synthesis



of robot controllers (Hamann et al., 2010; Wilson
et al., 2019), or large-scale IoT systems (Sinha
and Chaczko, 2017). Artifial hormone systems
have also been proposed as the basic mechanism
of middleware for distributed systems (Sobe et al.,
2015). Ant algorithms have originally been pro-
posed in (Dorigo et al., 1996) and (Dorigo and
Gambardella, 1997). They are a bio-inspired
meta-heuristic based on the foraging behavior of
ants (e.g., the Black Garden ant Lasius niger or
the Argentine ant Iridomyrmex humilis) and have
been applied successfully to the NP-hard prob-
lem of finding the shortest path in the traveling
salesman problem (Lawler et al., 1985). A thor-
ough introduction to ant algorithms can be found
in (Dorigo and Stützle, 2004) and in (Bonabeau
et al., 1999); there exist currently over a hun-
dred variants of these algorithms. Ant algorithms
have also been investigated for use as a rout-
ing protocol in packet routing networks in, e.g.,
(Caro and Dorigo, 1998) or (Di Caro et al., 2005)
where they are implemented as distributed algo-
rithms using only local information at each net-
work node. They have been shown to converge
quickly with reasonable overhead. Compared to
the related work, we do not create a swarm that
operates in a solution space of possible schedules
as solutions to a given job-shop scheduling set,
but instead derive a bottom-up approach, where
embodied agents represent physical entities in the
fab (instead of representing a single solution in
the solution space), and work with local rules
from which a global behavior emerges.

7 Conclusion

Job shop scheduling is an NP-hard problem
which makes it impossible to find an optimal so-
lution of a large scale system in reasonable time.
While previous approaches often aimed at reduc-
ing the problem size by optimizing subsets of the
system, we aim for a bottom-up approach that
uses swarm-based modeling to establish local in-
teraction rules between related parts of the sys-
tem. The proposed approach is sketched via two
different algorithms, one inspired by the natural
endocrine system and the other inspired by euso-
cial insects. We depicted a mapping between ma-
chines and lots in the job shop system to agents
of a swarm system.

As a next step we will elaborate on the effi-
ciency of the proposed candidate algorithms us-
ing a simulation approach based on an abstracted
version of a wafer fab. An open question remains
if an improvement is measurable at workcenter
level as approximate scheduling solvers already

exist for several workcenters. This brings up an-
other question that needs to be answered: how
to integrate with and where to set the bound-
ary between currently used solvers and the swarm
approach in the running system? One possibility
would be that the swarm algorithms provide local
information to the solver which takes this infor-
mation into account during its calculation.

Acknowledgement

This work was performed in the course of
project SWILT3 (Swarm Intelligence Layer to
Control Autonomous Agents) supported by FFG
under contract number 867530.

REFERENCES

Almufti, S., Marqas, R., and Ashqi, V. (2019). Tax-
onomy of bio-inspired optimization algorithms.
Journal of Advanced Computer Science & Tech-
nology, 8(2):23–31.

Blazewicz, J., Ecker, K., Pesch, E., Schmidt, G., and
Weglarz, J. (2019). Handbook on Scheduling.
Springer.

Bonabeau, E., Dorigo, M., and Theraulaz, G. (1999).
Swarm Intelligence – From Natural to Artificial
Systems. Oxford University Press.

Brinkschulte, U., Pacher, M., and Von Renteln, A.
(2007). Towards an artificial hormone system
for self-organizing real-time task allocation. Soft-
ware Technologies for Embedded and Ubiquitous
Systems, Springer, pages 339–347.

Caro, G. D. and Dorigo, M. (1998). Antnet: Dis-
tributed stigmergy control for communications
networks. Artificial Intelligence Research, 9:317–
365.

Da Col, G. and Teppan, E. C. (2016). Declarative de-
composition and dispatching for large-scale job-
shop scheduling. In Proceedings of the Joint Ger-
man/Austrian Conference on Artificial Intelli-
gence, pages 134–140. Springer.

Di Caro, G., Ducatelle, F., and Gambardella, L. M.
(2005). Anthocnet: An adaptive nature-inspired
algorithm for routing in mobile ad hoc networks.
European Transactions on Telecommunications,
16(5):443–455.

Dorigo, M. and Gambardella, L. M. (1997). Ant
colony system: A cooperative learning approach
to the traveling salesman problem. IEEE Trans.
on Evolutionary Computation, 1(1):53–66.

Dorigo, M., Maniezzo, V., and Colorni, A. (1996).
Ant system: Optimization by a colony of coop-
erating agents. IEEE Trans. on Systems, Man,
and Cybernetics, Part B, 26(1):29–41.

Dorigo, M. and Stützle, T. (2004). Ant Colony Opti-
mization. A Bradford Book, The MIT Press.

3https://swilt.aau.at/

https://swilt.aau.at/


Elmenreich, W. and de Meer, H. (2008). Self-
organizing networked systems for technical ap-
plications: A discussion on open issues. In Pro-
ceedings of the 3rd International Workshop on
Self-Organizing Systems, pages 1–9. Springer.

Elmenreich, W., D’Souza, R., Bettstetter, C., and
de Meer, H. (2009). A survey of models and de-
sign methods for self-organizing networked sys-
tems. In Self-Organizing Systems, volume 5918
of LNCS, pages 37–49. Springer.

Elmenreich, W., Schnabl, A., and Schranz, M. (2021).
An artificial hormone-based algorithm for pro-
duction scheduling from the bottom-up. In Pro-
ceedings of the 13th International Conference on
Agents and Artificial Intelligence. SciTePress.

Gao, K., Cao, Z., Zhang, L., Chen, Z., Han, Y., and
Pan, Q. (2019). A review on swarm intelligence
and evolutionary algorithms for solving flexible
job shop scheduling problems. IEEE/CAA Jour-
nal of Automatica Sinica, 6(4):904–916.

Garey, M. R., Johnson, D. S., and Sethi, R.
(1976). The complexity of flowshop and job-
shop scheduling. Mathematics of Operations Re-
search, 1(2):117–129.

Geng, H., editor (2018). Semiconductor Manufactur-
ing Handbook. McGraw-Hill Education.

Ghumare, M., Bewoor, L., and Sapkal, S. (2015). Ap-
plication of particle swarm optimization for pro-
duction scheduling. In Proc. of the International
Conference on Computing Communication Con-
trol and Automation, pages 485–489. IEEE.

Hamann, H., Stradner, J., Schmickl, T., and Crail-
sheim, K. (2010). Artificial hormone reaction
networks: Towards higher evolvability in evolu-
tionary multi-modular robotics. In Proceedings
of the Artificial Life XII, pages 773–780.

Hassanien, A. E. and Emary, E. (2018). Swarm Intel-
ligence: Principles, Advances, and Applications.
CRC Press.

Heylighen, F. (2001). The science of self-organization
and adaptivity. The Encyclopedia of Life Sup-
port Systems, 5(3):253–280.

Lawler, E. L., Lenstra, J. K., Kan, A. H. R., and
Shmoys, D. B. (1993). Sequencing and schedul-
ing: Algorithms and complexity. Handbooks in
Operations Research and Management Science,
4:445–522.

Lawler, E. L., Lenstra, J. K., Rinnooy-Kan, A. H. G.,
and Shmoys, D. B., editors (1985). The Travel-
ing Salesman Problem: A Guided Tour of Com-
binatorial Optimization. JohnWiley & Sons.

Li, X. and Gao, L. (2016). An effective hybrid ge-
netic algorithm and tabu search for flexible job
shop scheduling problem. International Journal
of Production Economics, 174:93–110.

Pacino, D. and Van Hentenryck, P. (2011). Large
neighborhood search and adaptive randomized
decompositions for flexible jobshop scheduling.
In Proc. of the 22nd International Joint Confer-
ence on Artificial Intelligence, pages 1997–2002.

Renteln, A. V., Brinkschulte, U., and Weiss, M.
(2008). Examinating task distribution by an ar-
tificial hormone system based middleware. In
Proc. of the 11th IEEE International Symposium
on Object and Component-Oriented Real-Time
Distributed Computing, pages 119–123.

Schranz, M., Bagnato, A., Brosse, E., and Elmenre-
ich, W. (2018). Modelling a CPS swarm system:
A simple case study. In Proc. of the 6th Interna-
tional Conference on Model-Driven Engineering
and Software Development, pages 615–624.

Schranz, M., Umlauft, M., Sende, M., and Elmenre-
ich, W. (2020). Swarm robotic behaviors and
current applications. Frontiers in Robotics and
AI, 7:36.

Sharma, T. K. and Pant, M. (2017). Shuffled ar-
tificial bee colony algorithm. Soft Computing,
21(20):6085–6104.

Shen, W. M., Chuong, C. M., and Will, P. (2002).
Digital hormone models for self-organization. In
Proceedings of the 8th International Conference
on Artificial Life, pages 116–120.

Sinha, S. and Chaczko, Z. (2017). Concepts and ob-
servations in artificial endocrine systems for iot
infrastructure. In Proceedings of the 25th In-
ternational Conference on Systems Engineering,
pages 427–430.

Sobe, A., Elmenreich, W., Szkaliczki, T., and
Böszörmenyi, L. (2015). SEAHORSE: General-
izing an artificial hormone system algorithm to
a middleware for search and delivery of informa-
tion units. Computer Networks, 80:124–142.

Sobe, A., Fehérvári, I., and Elmenreich, W. (2012).
FREVO: A tool for evolving and evaluating self-
organizing systems. In Proceedings of the 1st
International Workshop on Evaluation for Self-
Adaptive and Self-Organizing Systems.

Stidham Jr, S. (2002). Analysis, design, and con-
trol of queueing systems. Operations Research,
50(1):197–216.

van Ast, J., Babuska, R., and De Schutter, B. (2008).
A general modeling framework for swarms. In
Proceedings of the IEEE Congress on Evolution-
ary Computation, pages 3795–3800.

Wilensky, U. and Rand, W. (2015). An Introduction
to Agent-Based Modeling: Modeling Natural, So-
cial, and Engineered Complex Systems with Net-
Logo. MIT Press.

Wilson, J., Timmis, J., and Tyrrell, A. (2019). An
amalgamation of hormone inspired arbitration
systems for application in robot swarms. Applied
Sciences, 9(17).

Yuan, Y. and Xu, H. (2013). Flexible job shop
scheduling using hybrid differential evolution al-
gorithms. Computers & Industrial Engineering,
65(2):246–260.

Zhang, G., Shao, X., Li, P., and Gao, L. (2009).
An effective hybrid particle swarm optimization
algorithm for multi-objective flexible job-shop
scheduling problem. Computers & Industrial
Engineering, 56(4):1309–1318.


	Introduction
	Semiconductor Fab Setting
	Problem Statement
	Swarm Modeling of the Problem
	Challenges
	Swarm Member Candidates

	Candidate Algorithms
	Hormone Algorithm
	Ant Algorithm

	Related Work
	Conclusion

