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Abstract —The temporal correlation of interference is a key performance factor of several technologies and protocols for wireless
communications. A comprehensive understanding of interference correlation is especially important in the design of diversity schemes,
whose performance can severely degrade in case of highly-correlated interference. Taking into account three sources of correlation —
node locations, channel, and traffic — and using common modeling assumptions — random homogeneous node positions, Rayleigh
block fading, and slotted ALOHA traffic — we derive closed-form expressions and calculation rules for the correlation coefficient of
the overall interference power received at a certain point in space. Plots give an intuitive understanding as to how model parameters
influence the interference correlation.
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1 INTRODUCTION AND MOTIVATION

MOBILE communication systems have to cope with
the fact that the quality of a radio link varies over

time. Such time-variant behavior of the wireless environ-
ment is mainly caused by two factors. First, mobility of
devices and obstacles changes the multipath propagation
constellation. These changes lead to fluctuations of the
received signal power over time (fading). Second, the
data traffic sent by devices and base stations varies over
time, which in turn changes the interference situation
and leads to fluctuations of the signal-to-interference
ratio at a given receiver.

Several communication techniques and protocols actu-
ally exploit this time-varying behavior. The basic idea is
as follows: if a transmission fails at a certain time instant,
it might well succeed at a later time instant. Methods us-
ing this approach include pure time diversity schemes —
e.g., retransmission protocols [1], channel coding with
interleaving [2] — and space-time diversity schemes —
e.g., space-time coding [3], cooperative relaying [4],
and opportunistic scheduling [5]. The implementation of
such schemes requires a comprehensive understanding
of the temporal autocorrelation of the received signal.
Informally speaking, the correlation indicates what dif-
ference to expect between two signal samples, i.e., how
well can one value be estimated when knowing the
other. Applied to wireless communications, the temporal
correlation of a signal tells us how long to wait until the
environment’s characteristics change significantly, such
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that a retransmission makes sense.
The correlation of a signal suffering from channel

fading has been investigated in detail by real-world
measurements and mathematical models (see, e.g., [6]–
[8] and references therein). Such work considers a point-
to-point link, e.g., between a mobile computer and a
base station. An important parameter in this context is
the channel coherence time, which quantifies the period
over which signal values are likely to experience com-
parable attenuation. Messages separated by a time span
much longer than the coherence time have little to no
correlation and are thus expected to experience different
fading conditions.

The correlation of interference has received much less
attention in the literature, despite the fact that it also has
significant impact on system design and performance.
This kind of analysis must consider multipoint-to-point
communications, such as a shared link between several
mobile devices and a base station. Profound knowledge
of this domain is needed to optimize protocols and
improve performance. First analytical results toward a
better understanding of interference correlation were
recently achieved by Haenggi and Ganti (see [9]–[11]).
We continue their work by analyzing the temporal cor-
relation of interference on a broader set of scenarios,
accounting for a larger set of causes for correlation.

The contributions of this article are as follows: We in-
vestigate temporal correlation of the overall interference
power at a certain point in space obtained for various
modeling assumptions. Hereby, we consider three main
reasons that may cause interference correlation:

i) the node locations are temporarily correlated,
j) the wireless channel shows a temporal correlation,
k) the traffic sent by nodes is temporarily correlated.

Each of these system properties is modeled in three
ways (see Section 2). All 27 combinations of reasons
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and modeling assumptions are considered, where each
of them is denoted by a triple (i, j, k) ∈ {0, 1, 2}3. For
each case (i, j, k), we analyze the temporal correlation
of interference by means of the correlation coefficient
(Section 3). In fact, the article provides closed-form ex-
pressions of correlation coefficients and their limiting
distributions for randomly homogeneously positioned
nodes, Rayleigh block fading, and Poisson-like traffic
resulting from slotted ALOHA. Interpretation of the
results leads to a better understanding of the influence
of message arrival rate, channel coherence time, and
message length on interference correlation.

2 MODELING ASSUMPTIONS

The covariance between two random variables X1 and
X2 with expected values E[X1] and E[X2] is given by

cov (X1, X2) = E [X1X2]− E[X1] · E[X2]. (1)

Informally speaking, it is a measure for the relationship
between the two variables. If the covariance is positive
(negative), high values for one variable imply high val-
ues (low values) for the other. If the covariance is zero,
there is no linear relationship between the two variables.

The correlation between two random variables is mea-
sured in terms of a normalized covariance, namely by
Pearson’s correlation coefficient [12]

ρ (X1, X2) :=
cov(X1, X2)

√

var(X1)
√

var(X2)
(2)

with ρ∈ [−1,+1]. The two variables are fully positively
correlated if ρ = +1 and fully negatively correlated if
ρ = −1. They are uncorrelated if ρ = 0. Independent
random variables are always uncorrelated.

Time is discretized into slots of equal durations; these
slots are indexed by τ ∈ N. The objective of this article
is to derive, for each case (i, j, k), the correlation coeffi-
cient ρ(i, j, k) of the received interference power in two
consecutive time slots τ = t− 1 and t.

2.1 Node Locations

The network nodes are distributed on the plane R2 using
a Poisson point process with intensity λ. A set of node
locations is denoted by N . We consider three options:

0) Static. The locations N remain fixed over all time
slots. They are a given condition under which the
interference analysis is performed.

1) Randomly changing. The locations N are chosen
anew in each slot, independent of previous slots,
by a realization of the Poisson process.

2) Static but unknown. The locations N remain fixed
over all slots but they are unknown. The interfer-
ence analysis is conducted over the population of
all possible locations. A spatial average is taken
over all realizations of the Poisson point process
(cf. [10]).

The distance of a node location x∈N to the origin (0, 0)
is denoted by ‖x‖ normalized to meters.

2.2 Channel

Each node has the same transmit power κ. The wireless
channel is modeled with a distance-dependent path loss
and Rayleigh fading caused by multipath propagation.
We are interested in the overall power received at a given
point in space. Without loss of generality, due to the
stationarity of the Poisson point process, we consider
the received power at the origin (0, 0) of the plane R2.

The power received from node x is denoted by the
random variable I(x). It can be expressed by [13]

I(x) := κ · l(‖x‖) · h2
x . (3)

The term l(‖x‖) is the path loss function describing the
power attenuation over distance; it is typically modeled
by l(‖x‖) := min(1, ‖x‖−α) with path loss exponent
α ≥ 2. The term hx is a random variable that models
the effects of multipath fading; it is independent from
node to node [14]. A generalized block fading channel
is applied, in which the channel state does not change
during c consecutive time slots and then changes to an
independent random value (also see [9], [15], [16]). The
value 1/c is a measure for the rapidity of fading.

The channel is modeled in three different ways:

0) Deterministic and constant. The overall attenuation
for a given distance is constant over time (no
fading, i.e. hx ≡ 1).

1) Randomly changing each slot. The overall attenuation
for a given distance varies randomly over time
according to Rayleigh fading with c = 1, i.e. the
channel state is independent from slot to slot.

2) Randomly changing each c slots. The overall atten-
uation for a given distance varies randomly over
time according to Rayleigh fading with c ≥ 2. This
introduces dependencies in the channel states.

In Cases 1 and 2, the fading state h2
x is an exponen-

tially distributed random variable with expected value
E
[

h2
x

]

= µ = 1, i.e., it comprises the probability density
fh2

x
(ξ) = 1/µ · exp (−ξ/µ) = exp (−ξ). The same channel

model (Case 0 and 1) was used in a related study [11].
The expected value of the reception power with re-

spect to fading for a fixed node location x is given by

E [I(x) |x] = I(x)|hx=1 = κ · l(‖x‖) . (4)

Note that the expected values E[I(x) |x] generally differ,
as the distances ‖x‖ between the interfering nodes and
the origin usually vary.

2.3 Traffic

Slotted ALOHA [17] is employed for medium access
control. All messages have the same duration of d slots.
Some nodes are randomly selected to act as senders; this
subset of nodes is called S; the fraction of nodes from
N in S is called S ∈ [0, 1]. The nonsending nodes N \S
are called idle nodes. A given node is modeled in three
different ways:

0) Constant. At the beginning, each node decides
whether to become sender or idle node. A node
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becomes sender with probability p and keeps its
role for the entire time. Each sender transmits in
each slot with probability one.

1) Randomly changing each slot. The decision of a node
to become sender or not is made anew in each slot
and independently of previous slots. It becomes
sender with probability p. The message duration
is d = 1 slot.

2) Randomly changing with message length d. The set of
senders S again changes over time. The message
duration exceeds one slot (d ≥ 2). In each slot, each
idle node starts sending with probability p

1−p(d−1) .
This probability is chosen such that an expected
fraction p of all nodes start sending a message
within each slot. Note that we have to ensure
dp ≤ 1. The expected fraction of nodes sending at
a given time instant is thus S = dp. This model
introduces dependencies in the traffic.

3 TEMPORAL CORRELATION OF INTERFERENCE

All signals radiated by senders are regarded as interfer-
ence at the origin. The instantaneous value of the overall
interference power I(S) caused by the senders S in a
given time slot is the sum [11]

I(S) :=
∑

x∈S

I(x)
(3)
=
∑

x∈S

κ · l(‖x‖) · h2
x . (5)

As mentioned above, we consider the overall interfer-
ence I(S) at two consecutive time slots and derive the
correlation coefficient ρ between these two interference
values according to (2). Table 1 summarizes the results
for all possible cases (i, j, k) ∈ {0, 1, 2}3. All results
have been backed up by computer simulations. These
are shown for the first nontrivial case (0, 0, 2) but are
omitted in all further cases, as they would not provide
any additional information.

Let us make some definitions that will subsequently
be useful. As the set of senders S in general changes
over time, we use an indicator variable γx(S) denoting
whether or not a node x∈N is contained in S, i.e.,

γx(S) :=

{

1 x ∈ S

0 else .
(6)

This variable is Bernoulli distributed with variance

var (γx(S)) = E [S]
(

1− E [S]
)

. (7)

It can be exploited to express the interference as

I(S) =
∑

x∈S

I(x) =
∑

x∈N

κ · l(‖x‖) · h2
x · γx(S) . (8)

TABLE 1
Correlation of Interference: Summary of Results

Locations Channel Traffic Interference
i j k ρ Eq.
0 0 0 undefined
0 0 1 0

0 0 2 (d−1)(dp−1)
d(p(d−1)−1)

(29)

0 1 0 0
0 1 1 0

0 1 2 (d−1)(dp−1)2

d(p(d−1)−1)(dp−2)
(33)

0 2 0 c−1
c

(43)

0 2 1
p(1+p(c−2))

(2−p)(1+p(c−1))
(49)

0 2 2 - (61)
1 0, 1, or 2 0, 1, or 2 0
2 0 0 1 (13)
2 0 1 p (11)
2 1 0 1/2 (14)
2 1 1 p/2 (12)

2 0, 1 2
d−1+p/(1−p(d−1))

d E[h4]
(42)

2 2 0 2c−1
2c

(44)

2 2 1 p
2

(

2−
p

1+p(c−1)

)

(47)

2 2 2 - (64)

The expected interference in a given slot is [10]

E
[

I(S)
] (5)

= E

[

∑

x∈S

κ · l(‖x‖) · h2
x

]

= κ · E

[

∑

x∈S

l(‖x‖)

]

= κ · dpλ ·

∫

R2

l(‖x‖) dx (9)

α>2
= κ · dpλ ·

απ

α− 2
. (10)

The second equality holds as κ is constant, the random
variables l(‖x‖) and h2

x are independent of each other,
and E

[

h2
x

]

≡ 1. The third equality holds due to Camp-
bell’s theorem (Chapter 10.2 in [12]) and because the
density of sending nodes is dpλ. The resulting integral
converges for the practically relevant case α > 2.

It is useful to classify all senders of two consecutive
time slots into three disjoint sets: Nodes sending in both
slots are assigned to set S11. Nodes sending in the first
slot only are in set S10. And nodes sending in the second
slot only are in set S01. The set S11 can be further
subdivided into two disjoint sets: Nodes occupying both
slots with the same message are called S∗

11. Nodes that
finish a message transmission in the first slot and start a
new message in the second slot are called S∗∗

11 . Clearly,
S11 = S∗

11∪S
∗∗
11 . Similarly, senders experiencing the same

channel state in both slots are called S ′
11, and senders

with different channel states in these slots are called S ′′
11.

Let S11 denote the fraction of nodes within S11 and use
a similar notation for all other sets.

Appendix A provides two theorems on the correlation
between interference values from disjoint node sets,
which will be used in the following derivations.
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3.1 The Nonrandom Case (0, 0, 0).

The only case where no randomness occurs is (i, j, k) =
(0, 0, 0). The variance of the interference is zero since the
interference value remains constant over all time slots.
Hence, the correlation coefficient ρ(0, 0, 0) is not defined.

3.2 The Cases without Correlation; Cases (0, 0, 1),
(0, 1, 0), and (0, 1, 1).

If all node locations are fixed (i = 0), correlation of
two interference values can arise from channel or traffic
correlation. If j, k ∈ {0, 1} with j + k > 0 no source of
correlation exists; thus we always have ρ(0, j, k) = 0.

3.3 Correlation for Randomly Changing Node Posi-
tions; Cases (1, j, k).

All scenarios in which the node locations are statistically
independent for each slot can be analyzed collectively.
Even if dependencies in channel and traffic exist, these
dependencies show no effect due to the new random po-
sition of all nodes. The correlation of interference for all
these cases is zero, i.e., ρ(1, j, k) = 0 ∀j, k ∈ {0, 1, 2}. Note
that case (1, 0, k) is unrealistic, as it assumes a constant
channel with randomly changing node positions.

3.4 Correlation Caused by Node Positions; Cases
(2, j, k) with j, k ∈ {0, 1}.

The implications of correlated node locations on interfer-
ence have been investigated by Haenggi and Ganti (see
[10], [11]). That work covers the cases (2, 0, 1) and (2, 1, 1)
in our notation. Results (Corollary 2 in [10]) state that

ρ(2, 0, 1) = p and (11)

ρ(2, 1, 1) =
p

2
. (12)

They can be applied to the following cases: In case
(2, 0, 0), always the same nodes transmit in each slot. Idle
nodes can be neglected, resulting in the same correlation
as in case (2, 0, 1) with sending probability p = 1, i.e.

ρ(2, 0, 0) = 1 . (13)

Similarly, case (2, 1, 0) can be derived from (2, 1, 1) by
setting p = 1, leading to

ρ(2, 1, 0) =
1

2
. (14)

3.5 Correlation Caused by Traffic; Cases (0, 0, 2)
and (0, 1, 2).

If messages exceed one slot, a positive correlation of the
interference in two consecutive slots is introduced. Let
us subdivide all senders into different sets as explained
above. We are interested in the correlation coefficient
between interference caused by nodes sending in the first
slot (S11∪S10) and interference caused by nodes sending
in the second slot (S11 ∪ S01). We have

ρ(0, j, 2) =
E
[

cov (I(S11 ∪ S10), I(S11 ∪ S01) | N )
]

E [var(I(S) | N )]
(15)

with I(S11 ∪ S10) = I(S11) + I(S10) and I(S11 ∪ S01) =
I(S11) + I(S01). The following paragraphs derive the
enumerator and denominator of this expression. For
simplicity of notation, we use the abbreviations I11 :=
I(S11), I10 := I(S10), and I01 := I(S01).

The enumerator of (15) expands to

E [cov(I11 + I10, I11 + I01 | N )] = (16)

= E [var(I11 | N )] + 2E [cov(I11, I10 | N )]

+ E [cov(I10, I01 | N )] .

The covariances in this expression can be computed
by rearranging (2) to

E [cov(I10, I01 | N )] = (17)

= ρ(I10, I01) ·
√

E [var(I10 | N )]
√

E [var(I01 | N )]

and similar for E [cov(I11, I10 | N )].

To compute the two correlation coefficients, we must
know the expected fractions of nodes in the three sender
sets. For this reason, we also use the subsets S∗

11 and
S∗∗
11 . The nodes S∗

11 occupy both slots with one message.
These nodes start a message in slot t− (d− 1), . . . , t− 2,
or t − 1. The fraction of nodes contained in this set is
S∗
11 = p(d − 1). The nodes S∗∗

11 start messages in slots

t− d and t. Their fraction is S∗∗
11 = p2

1−p(d−1) .

The expected fraction of nodes in S11 is thus

E [S11] = p (d− 1) +
p2

1− p (d− 1)
. (18)

Since, in each slot, a fraction p of all nodes start a
message, we have

E [S10] = E [S01] = p−
p2

1− p(d− 1)
. (19)

3.5.1 Constant channel

If no fading is present, we apply (18) and (19) in Theo-
rem 1 of Appendix A to obtain

ρ
(

I10, I11
)

= −

√

p2(1− d+ pd(d− 2))

(p(d− 2)− 1)(p2d− pd+ 1)
(20)

and ρ(I10, I01) = −
p(dp− 1)

dp(p− 1) + 1
. (21)

Let γx(S10) denote the indicator variable that node x∈
S10. It is Bernoulli distributed with variance

var(γx(S10)) = E[S10] (1− E[S10]) . (22)

The indicator variables γx(S01), γx(S11), and γx(S) are
defined in a similar manner.
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The expected variance of the interference caused by
the nodes S10 for given node locations N is

E
[

var (I10 | N )
]

= E

[

var

(

∑

x∈N

κ l(‖x‖) γx(S10)

∣

∣

∣

∣

∣

N

)]

= κ2 · E

[

∑

x∈N

l2(‖x‖)

]

· var(γx(S10)) (23)

= κ2 · λ

∫

R2

l2(‖x‖) dx ·
p(dp−1)(dp2−dp+1)

(p(d−1)−1)
2 (24)

α>2
= κ2 · λ

απ

α− 1
·
p(dp−1)(dp2−dp+1)

(p(d−1)−1)
2 . (25)

These equations hold since κ and l(‖x‖) are constants
regarding the variance operator, because the sum can
be converted to an integral using Campbell’s theorem,
and because we apply (22) with (19) in (23). The same
expression is obtained for the interference caused by
S01. The expression for S11 is obtained using E[S11]
according to (18) instead of E[S10] in (22), and applying
the resulting variance in (23).

We have now all terms to compute (17) and related
expressions, which can in turn be used to compute (16).

The denominator of (15) without fading is

E
[

var (I(S) | N )
] (8)
= E

[

var

(

∑

x∈N

κ l(‖x‖) γx(S)

∣

∣

∣

∣

∣

N

)]

= κ2 · E

[

∑

x∈N

l2(‖x‖)

]

· var(γx(S)) (26)

= κ2 · λ

∫

R2

l2(‖x‖) dx · dp (1− dp) (27)

α>2
= κ2 · λ

απ

α− 1
· dp (1− dp) . (28)

The third equality holds due to Campbell’s theorem with
node density λ and due to (7) with E[S] = dp.

The resulting correlation coefficient is

ρ(0, 0, 2) =
(16)

(28)
=

(d− 1) (dp− 1)

d (p (d− 1)− 1)
(29)

independent of κ, λ, and α. Figure 1 presents a plot of
ρ(0, 0, 2) for different values of the sending probability
p and message duration d. Marks indicate the values
obtained from the mathematical expression. Lines show
results from simulations carried out as a validity check
using κ = 1 mW, λ = 10−4, and α = 3. The simu-
lations fully support the analytical results. Simulations
were performed over 10, 000 slots, where each pair of
consecutive slots was considered. The experiment was
repeated 10 times, and results were averaged over these
runs.

As shown in Figure 1(a), the interference correlation
decreases with an increasing fraction p of senders for
a given message duration. The curves end at pd = 1,
where no correlation exists. For high p-values, almost all
nodes are sending, and thus each node is either in S10
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(a) Plot of ρ(0, 0, 2) over p.
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(b) Plot of ρ(0, 0, 2) over dp.

Fig. 1. Interference correlation in case (0, 0, 2). Points are
analytical results and lines are simulation results.

or S11 in the first slot, while nodes are interchanging be-
tween these sets. This causes a high negative correlation
ρ(I10, I11), which in turn decreases ρ(0, 0, 2).

Figure 1(b) shows the correlation coefficient over the
expected fraction of sending nodes S = pd. For given p,
the correlation increases with the message duration d.
This behavior results from the fact that the message
duration is an indicator for the fraction of nodes sending
in both slots, and nodes sending in both slots lead
to interference correlation. The correlation coefficient
approaches one in the limit, i.e., limd→∞ ρ(0, 0, 2) = 1,
where dp ≤ 1 needs to be ensured, which implies p → 0.

3.5.2 Channel changing randomly each slot

Let us now turn to a channel that changes each slot
with Rayleigh fading and derive the enumerator and
denominator of (15) in this case as well. It follows from
Theorem 2 in Appendix A that fading does not influ-
ence the enumerator cov(I(S11 ∪ S10), I(S11 ∪ S01) | N ).
The denominator — the expected variance of the overall
interference for given locations — is given by (cp. (26))

E [var (I(S) | N )] = κ2 · λ

∫

R2

l2(‖x‖) dx · var
(

h2
xγx(S)

)

(30)
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Fig. 2. Interference correlation in case (0, 1, 2).

with

var
(

h2
xγx(S)

)

= E
[

h4
xγ

2
x(S)

]

−
(

E
[

h2
xγx(S)

])2

= 2dp− (dp)2 (31)

for a node x, which yields

E [var (I(S) | N )]
α>2
= κ2 · λ

απ

α− 1
· dp (2− dp) . (32)

The resulting correlation coefficient

ρ(0, 1, 2) =
(d− 1) (dp− 1)

2

d (p (d− 1)− 1) (dp− 2)
(33)

is plotted in Figure 2. The qualitative behavior is similar
to that of case (0, 0, 2). The correlation coefficient is
approximately halved, as the interference variance is
approximately doubled — compare (28) and (32). The
correlation increases for very large messages and ap-
proaches limd→∞ ρ(0, 1, 2) = p−1

p−2 . This upper bound is
also depicted in Figure 2(b).

3.6 Correlation Caused by Node Positions and Traf-
fic; Cases (2, j, 2), j = 0, 1

Again we partition the senders of each slot into S11, S10,
and S01. The expected fractions of nodes in these sets are

the same as in cases (0, 0, 2) and (0, 1, 2); they are given
in (18) and (19). Our goal is to derive

ρ(2, j, 2) =
cov (I11 + I10, I11 + I01)

var(I(S))
. (34)

First, we derive the covariance of the interference val-
ues in the time slots (t− 1) and t. To do so, we compute

E
[

(I11 + I10) (I11 + I01)
]

=

= E

[

∑

x∈S11∪S10

κ l(‖x‖)h2
x ·

∑

y∈S11∪S01

κ l(‖y‖)h2
y

]

= E

[

∑

x∈S11

κ2 l2(‖x‖)h4
x

]

+ E

[

∑

x∈S11∪S10
y∈S11∪S01

x 6=y

κ2 l(‖x‖) l(‖y‖)h2
xh

2
y

]

= κ2

(

p (d− 1) +
p2

1− p (d− 1)

)

λ

∫

R2

l2(‖x‖) dx

+

(

κ dpλ

∫

R2

l(‖x‖) dx

)2

(35)

α>2
= κ2

(

p(d− 1) +
p2

1− p (d− 1)

)

λ
απ

α− 1

+

(

κ dpλ
απ

α− 2

)2

. (36)

Furthermore, it follows from (10) that

E
[

I11 + I10
]

= E
[

I11 + I01
] α>2

= κdpλ
απ

α− 2
. (37)

Using (1) yields

cov (I11+I10, I11+I01) =

= E
[

(I11+I10)(I11+I01)
]

−E [I11+I10] E [I11+I01]

α>2
= κ2

(

p (d− 1) +
p2

1− p (d− 1)

)

λ
απ

α− 1
. (38)

Next, we derive the interference variance, using an
approach similar to that of [10]. The second moment of
the interference is

E
[

I2(S)
]

= E





(

∑

x∈S

κ l(‖x‖)h2
x

)2




= E

[

∑

x∈S

κ2 l2(‖x‖)h4
x

]

+ E





∑

x,y∈S

κ2 l(‖x‖) l(‖y‖)h2
xh

2
y





= E
[

h4
]

κ2 dpλ

∫

R2

l2(‖x‖) dx

+

(

κ dpλ

∫

R2

l(‖x‖) dx

)2

(39)

α>2
= E

[

h4
]

κ2 dpλ
απ

α− 1
+

(

κ dpλ
απ

α− 2

)2

. (40)
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Fig. 3. Interference correlation in case (2, 0, 2).

The variance is thus

var
(

I(S)
)

= E
[

I2(S)
]

− (E [I(S)])2

α>2
= E

[

h4
]

κ2 dpλ
απ

α− 1
. (41)

Dividing (38) by (41) yields the correlation coefficient

ρ(2, j, 2) =
d− 1 + p

1−p(d−1)

d E [h4]
for j = 0, 1 (42)

with E
[

h4
]

= 1 for nonfading channels (j = 0) and
E
[

h4
]

=2 for Rayleigh fading (j=1).
As shown in Figure 3, the correlation in a nonfading

channel increases for increasing p and d. The curves can
roughly be interpreted as a blend of the cases (0, 0, 2) and
(2, 0, 1): The correlation for p being almost zero is similar
to case (0, 0, 2), as ρ(2, 0, 1) is equal to the fraction dp of
sending nodes. When increasing p, the correlation caused
by the traffic decreases, but the correlation caused by
the node locations increases linearly with dp. Ultimately,
when dp → 1, the curves approximate the linear func-
tion dp. When messages are very long, the correlation
approaches one, i.e., limd→∞ ρ(2, 0, 2) = 1 for given dp.

When Rayleigh fading is considered, the variance is
doubled, as can be observed in (41). Hence, the corre-
lation coefficient is halved, i.e. ρ(2, 1, 2) = ρ(2,0,2)

2 . The
limit for d → ∞ is also halved, i.e. limd→∞ ρ(2, 1, 2) = 1

2 .
A plot of ρ(2, 1, 2) is not shown.

3.7 Correlation Caused by Fading under Constant
Traffic; Cases (0, 2, 0), (2, 2, 0).

We now study the effects of a dependent fading channel
on interference correlation under constant traffic. Recall
that the channel state of each node changes after c ≥ 2
slots. These changes are independent for each node, i.e.,
they are not synchronized.

In case (0, 2, 0), the sending nodes are preselected
and do not change. In each pair of slots, the expected
fraction of nodes changing their channel state is 1/c. The
interference of these nodes is uncorrelated. The interfer-
ence correlation of all other nodes, which perceive the

same channel state in both slots, is 1. Hence, the overall
correlation is

ρ(0, 2, 0) =
c− 1

c
. (43)

In case (2, 2, 0), the correlation caused by the locations
is also considered. The expected fraction of senders with
a channel change is again 1/c. The interference correla-
tion of these senders is 1/2, similar to case (2, 1, 0). The
interference correlation of nodes with the same channel
state is 1, as derived for case (2, 0, 0). Overall, we can
compute the interference correlation as a weighted sum
of these two cases by 1

2c + (1− 1
c
), which yields

ρ(2, 2, 0) =
2c− 1

2c
. (44)

3.8 Correlation Caused by Fading under Random
Traffic; Cases (2, 2, 1) and (0, 2, 1).

This section addresses a dependent Rayleigh fading
channel under random traffic with static nodes.

3.8.1 Node positions are not given
The case (2, 2, 1) can be interpreted as a combination of
(2, 0, 1) and (2, 1, 1). Recall that S11 contains all nodes
sending in both slots, and a subset S ′

11 ⊂ S11 of them
have the same channel state in both slots. The nodes S ′

11

cause a correlation of p similar to case (2, 0, 1); the other
nodes cause a correlation of p/2 similar to case (2, 1, 1).
Using the fraction Sc := S′

11/S11, the correlation is

ρ(2, 2, 1) = E [Sc] p+
(

1− E [Sc]
) p

2
. (45)

Next, we derive an expression for E [Sc]. Recall that
the channel state changes after c slots. The details of our
model are as follows. The number of slots between a
given slot τ and the next change of the channel state is
called cτ ∈ {0, . . . , c} for a given node. When a node
sends for the first time, the counter cτ is set to c. It
is reduced in each slot, independent of whether or not
messages are sent, and approaches 1 after c slots. If the
node immediately sends another message, the counter
will be reset to c. If the node does not immediately send
another message, the counter will approach 0, remain at
this level, and be reset to c at the beginning of the next
message. With this model, there is a channel state change
between slot (t− 1) and t if and only if ct−1 = 1, which
means that E [Sc] = 1−P(ct−1 = 1). This probability can
be computed by combining the following three facts:

1) The sum of the probabilities of all possible values
for ct−1 gives 1, i.e.

∑c

n=0 P(ct−1 = n) = 1 .
2) If cτ has the value c, it afterwards also takes the

values c − 1, . . . , 1. Thus, P(ct−1 = 1) = P(ct−1 =
2) = . . . = P(ct−1 = c).

3) In order for ct−1 to take the value c, it is either 0
or 1 in slot (t − 2) and the node has to send, i.e.
P(ct−1 = c) = p(P(ct−2 = 0) + P(ct−2 = 1)) .

Combining these properties yields

P(ct−1 = 1) = 1− E [Sc] =
p

1 + (c− 1)p
, (46)
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Fig. 4. Interference correlation in case (2, 2, 1).

which can be employed in (45).
Figure 4 shows the resulting interference correlation

ρ(2, 2, 1) =
p

2

(

2−
p

1 + (c− 1)p

)

(47)

for different values of p and c. The interference becomes
more correlated for increasing traffic and slower fading.
We have a very similar situation as in case (2, 0, 1), where
no fading occurs but the channel stays constant all the
time. The limiting value is given by limc→∞ ρ(2, 2, 1) = p.

3.8.2 Node positions are given
Let us now turn to case (0, 2, 1). For given node posi-
tions N , the correlation coefficient is, in general, given
by the right hand side of (15). Using the sender subsets
S ′
11 ∪ S ′′

11 = S11 and their interference values I ′11 + I ′′11 =
I11, the enumerator is

E [cov(I ′11 + I ′′11 + I10, I
′
11 + I ′′11 + I01 | N )] = (48)

= E [var(I ′11 | N )] + 2E [cov(I ′11, I
′′
11 | N )]

+ E [var(I ′′11 | N )] + 2E [cov(I ′11, I10 | N )]

+ 2E [cov(I ′′11, I10 | N )] + E [cov(I10, I01 | N )] .

These covariances can be calculated by (17), which
requires the corresponding correlation coefficients and
variances. With random independent traffic, a node be-
comes sender with probability p in a given slot. We
have E [S11] = p2 and E [S10] = E [S01] = p − p2.
The nodes in S11 are split into two subgroups of size
E [S′

11] = p2 E[Sc] and E [S′′
11] = p2 (1− E[Sc]), where

Sc is again the fraction of nodes in S11 that have the
same channel state in both slots and is given by (46).
Using these expected values in Theorem 1, we can
derive the correlations ρ(I11, I

′′
11), ρ(I

′
11, I10), ρ(I

′′
11, I10),

and ρ(I10, I01). Using these values in (23) with (22),
we can derive the expected variances E [var(I ′11 | N )],
E [var(I ′′11 | N )], E [var(I10 | N )], and E [var(I01 | N )]. Note
that these variances are calculated without considering
fading, since fading does not change the covariances, as
shown in Theorem 2. Results are given in Appendix B
and can be applied in (48).
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Fig. 5. Interference correlation in case (0, 2, 1).

Finally, the correlation coefficient is obtained by divid-
ing (48) by (32) with d = 1, which yields

ρ(0, 2, 1) =
p(1 + p(c− 2))

(2 − p)(1 + p(c− 1))
. (49)

Figure 5 shows that the interference correlation in this
case increases with increasing traffic and decreases
with the rapidity of fading. Asymptotically, we have
limc→∞ ρ(0, 2, 1) = p

2−p
. Comparing Figures 4 and 5,

the correlation coefficient is higher in case (2, 2, 1) for
given c and p, since in that case the node locations are
an additional source of correlation.

3.9 Correlation Caused by Fading and Traffic; Case
(0, 2, 2).

The temporal correlation of interference in case (0, 2, 2)
has two sources: fading and traffic. These sources
strongly depend on each other and cannot be analyzed
individually. As in case (0, 0, 2), the expected fraction of
nodes in S11, S10, and S01 is given in (18) and (19). Recall
that the nodes S ′

11 have the same channel state in both
slots, and the nodes S ′′

11 have different states.
The major task is to determine E [S′′

11], which also
enables us to compute E [S′

11] = E [S11] − E [S′′
11]. The

number of slots from a certain slot τ to the next channel
state change is again called cτ ∈ {0, . . . , c} for a given
node. The probability that the regarded slots (t−1) and t
have different channel states is P(ct−1 = 1). We compute
the joint probability that a node x transmits in both slots
and the channel state changes after the first slot, i.e.,

E [S′′
11] = P

(

(x ∈ S11) ∧ (ct−1 = 1)
)

. (50)

The value of ct−1 is determined by the transmission
history of the node, i.e., by the sequences of empty and
nonempty slots of this node before slot (t − 1). It is,
however, not necessary to consider the full history but
only back to until a block of (c − 1) consecutive empty
slots. This analysis is sufficient as cτ is equal to zero after
(c−1) consecutive empty slots independent of the node’s
previous traffic. Hence, we have to find all possible
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sequences after a block of (c − 1) consecutive empty
slots that lead to ct−1 = 1. For each of these sequences,
we calculate its occurrence probability. Summing up all
these probabilities yields (50).

All possible sequences can be built up by concatenat-
ing the following building blocks: a message of duration
d, a message of duration d followed by one empty
slot, . . . , a message of length d followed by (c − 2)
empty slots. Each of these blocks can be identified by
its length in terms of slots modulo c. This identification
(ID) is unique for given c and d, and it is equal to
the change of cτ during the block. Let B denote the
set of all blocks (IDs) appearing for given c and d. The
probability of occurrence for a given block with ID m ∈ B
is p(1 − p)(m−d)mod c. Table 2 shows the block lengths,
probabilities of occurrence, and IDs.

TABLE 2
Blocks for traffic behavior.

Block length d d+ 1 · · · d+ c− 2
Probability p p(1− p) · · · p(1− p)c−2

Block ID d mod c d+ 1 mod c · · · d+ c− 2 mod c

Each sequence consists of one or more blocks. Next,
we try to find sequences (mi) that have some desired
properties, where mi ∈ B for all indices i. Let |mi| denote
the length of (mi) in terms of blocks and ‖mi‖ its length
in terms of slots. Then we have

‖mi‖ :=

|mi|
∑

i=1

d+ (mi − d mod c) . (51)

Furthermore, let M denote the set of all possible se-
quences (mi). The probability of occurrence of a se-
quence is denoted by P(mi). A sequence (mi) is called an
(s, e)-sequence, if cτ = s at the beginning of the sequence
implies cj+‖mi‖ = e at the end of the sequence. The set
of all (s, e)-sequences can be defined as

M(s, e) :=
{

(mi) ∈ M : s+

|mi|
∑

i=1

mi ≡ e mod c
}

. (52)

A minimal (s, e)-sequence is a sequence (mi) for which
no subsequence (mj)j∈I({1,...,|mi|} is an (s, e)-sequence.
The set of all minimal (s, e)-sequences is

M!(s, e) :=
{

(mi) ∈ M(s, e) : s+
∑

i∈I

mi 6≡ e mod c

∀ I ( {1, . . . , |mi|}, I 6= ∅
}

. (53)

Such a minimal sequence has a length of at most |mi| ≤
c+1. To proof this fact, we assume for a moment |mi| >
c + 1. Since 0 ≤ cτ ≤ c, cτ has the same value in at
least two different slots. If we remove the subsequence
inbetween these two slots, we get a subsequence that is
again an (s, e)-sequence, which is a contradiction.

The probability that the sequence of a node is a
minimal (s, e)-sequence is

P
(

M!(s, e)
)

=
∑

(mi)∈M!(s,e)

|mi|
∏

j=1

p (1− p)(mi−d) mod c (54)

=
∑

(mi)∈M!(s,e)

p|mi|(1− p)

|mi|∑

j=1

(mi−d) mod c

.

A (minimal) neutral sequence regarding s is a (mini-
mal) (s, s)-sequence. The probability of occurrence of all
neutral sequences regarding s can be derived from the
occurrence probability of the minimal (s, s)-sequences as
the sum of the infinite geometric series:

P (M(s, s)) =

∞
∑

i=0

P
(

M!(s, s)
)i

=
1

1− P (M!(s, s))
. (55)

This expression does, however, not hold for probabil-
ities P (M(s, e)) with s 6= e. To compute those proba-
bilities, we first have to introduce another concept: Let
M!(s, s, E) ⊆ M!(s, s) with E ⊂ B denote the set of
all minimal neutral sequences regarding s in which the
values in E never occur for cτ , i.e.

M!(s, s, E) :=
{

(mi) ∈ M!(s, s) : s+

k
∑

j=1

6≡ e mod c

∀ e ∈ E , 1 ≤ k ≤ |mi|
}

. (56)

We can construct M(s, e) with s 6= e in the following
way: Take a sequence (mi) ∈ M!(s, e) and place neutral
sequences regarding cτ between each two blocks as well
as at the beginning and end. Neutral sequences in which
a value for cτ occurs that previously occurred within
the sequence under consideration are excluded from
this placement, since otherwise the resulting sequence
would contain neutral subsequences other than the ones
inserted. Hence the construction process would not be
unique for each sequence, i.e., we could construct the
same sequence out of two different elements in M!(s, e).

Furthermore, let C(s, (mi), r) denote the value of cj+r

at position r of the sequence (mi) with cτ = s, i.e.

C(s, (mi), r) := s+

r
∑

i=1

mi mod c , (57)

and C(s, (mi), 0) := s. Let (mi)l denote the lth element
of a list of sequences. Two sequences (mi) and (m′

j) are
concatenated by writing (mi) ∪ (m′

j). In mathematical
terms, the set M(s, e) with s 6= e can be constructed as

M(s, e) =
{

(mi)0 ∪

|m′
j |
⋃

k=1

(m′
k ∪ (mi)k) :

∀(m′
j) ∈ M!(s, e),

∀(mi)k ∈ M!
(

C(s, (m′
j), k), C(s, (m′

j), k),

{C(s, (m′
j), o) ∀ 0 ≤ o ≤ k − 1}

)}

. (58)
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Hence, the probability that the given sequence is part of
M(s, e) with s 6= e is given by

P (M(s, e)) =
∑

(mi)∈M!(s,e)

P(mi)

|mi|
∏

j=0

P

(

M!
(

C(s, (mi), j),

C(s, (mi), j), {C(s, (mi), o) ∀ 0 ≤ o ≤ j − 1}
)

)

. (59)

The probability P (M(0, e)) can be interpreted as the
probability that cτ = e occurs.

As mentioned in (50), we are interested in the proba-
bility that a node sends in both slots (t−1) and t and that
ct−1 = 1. This comprises several situations: A message
could start in slot (t − 1) with ct−1 = 1, or in up to
(d− 1) slots before with ct−d = (d − 1 mod c) + 1. In all
cases, the values for cτ are such that ct−1 = 1. In the
last mentioned case, a message ends in slot (t − 1), so
it has to be ensured that the node indeed sends a (new)
message in slot t.

In summary, to compute E [S′′
11], we sum over all prob-

abilities of occurrence of these situations, with the last
one multiplied with the probability that the node sends
in slot t. This sum is multiplied with the probability that
the block of (c−1) empty slots indeed occurs and the
node sends afterwards. This yields

E [S′′
11] = p(1− p)c−1

(

d−1
∑

i=1

P
(

M
(

0, (i− 1 mod c) + 1
)

)

+ P
(

M
(

0, (d− 1 mod c) + 1
)

) p

1− (d− 1)p

)

. (60)

Since we now know the values for E [S′
11], E [S′′

11], E [S10],
and E [S01], we can apply Theorem 1 to compute the
covariances between these sets. Using the right hand side
of (15) and variance (32), the correlation coefficient yields

ρ(0, 2, 2)
α>2
=

E [cov(I ′11 + I ′′11 + I10, I
′
11 + I ′′11 + I01 | N )]

κ2λ απ
α−1

(

2dp− (dp)2
) .

(61)
Figure 6(a) shows ρ(0, 2, 2) over p for different values

of the message duration and a fixed channel parameter
c = 4. Note that the curves end at pd = 1. The
correlation is higher for longer and more overlapping
messages, with the following exception: When d is an
integer multiple of c, the messages and channel states
synchronize, i.e., a new channel state occurs for each
new message. This is the reason why increasing d from
3 to c = 4 yields a correlation gain, while increasing d
further to 5 results in a correlation loss. For small values
of dp, the slight decrease of correlation with increasing
traffic is due to the decrease of the correlation caused
by traffic, as can be observed in case (0, 0, 2). For high
dp, the correlation introduced by the channel is larger
than this decrease, and hence the overall interference
experiences a higher correlation.

The dependence on fading rapidity is depicted in
Figure 6(b). The correlation is typically higher for slower
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Fig. 6. Interference correlation in case (0, 2, 2).

fading, except for the synchronized behavior of chan-
nel and messages explained above. The curves can be
partitioned into groups, where the major increase of
correlation is determined by the integer value ⌊ c

d
⌋. A

significant increase of the correlation can be observed
every time c is an integer multiple of d.

3.10 Correlation Caused by Node Positions, Fading,
and Traffic; Case (2, 2, 2).

Case (2, 2, 2) is a mixture of (0, 2, 2) and (2, 1, 2). The
expected fraction of nodes in S10, S01, S ′

11, and S ′′
11 is

given by case (0, 2, 2). The derivation of the covariance
is similar to case (2, 1, 2) with the extension that the S11

must be split into its subsets S ′
11 and S ′′

11. This results in

cov (I ′11 + I ′′11 + I10, I
′
11 + I ′′11 + I01) =

= E
[

h4S′
11 + S′′

11

]

λκ2

∫

R2

l2(‖x‖) dx

+ (E [S10]− dp)λ2

(∫

R2

l(‖x‖) dx

)2

(62)

α>2
= E

[

h4S′
11 + S′′

11

]

λκ2 απ

α− 1

+
(

E [S10]− dp
)

λ2

(

απ

α− 2

)2

. (63)
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Fig. 7. Interference correlation in case (2, 2, 2).

The corresponding correlation coefficient is

ρ(2, 2, 2)
α>2
=

(63)

2dpλκ2 απ
α−1

. (64)

As in case (0, 2, 2), the correlation depends on p, c,
and d. Figure 7(a) shows that the correlation increases
with increasing message durations. Exceptions occur
again when messages and channel states synchronize.
Figure 7(b) shows the impact of fading rapidity on in-
terference correlation. The qualitative behavior is similar
to that of case (0, 2, 2).

Comparing cases (2, 2, 2) and (0, 2, 2), the major differ-
ence is that the correlation is higher in (2, 2, 2) for given
parameters. This is because the node locations are an
additional source of correlation. The difference is bigger
for more traffic, since the correlation caused by node
locations increases with p (see Section 3.4).

4 RELATED WORK

4.1 Analytical Work on Interference Correlation

Recent work by Haenggi et al. is very closely related
to this article. The letter [10] analyzes the temporal and
spatial correlation of interference in wireless networks.
It applies modeling assumptions corresponding to those

of our cases (2, j, k) with j, k ∈ {0, 1} investigated in
Section 3.4. The article [9] studies different performance
measures in random wireless networks. Analytical re-
sults are based on an “uncertainty cube,” which classifies
and quantifies the network stochastics with respect to
node placement, fading, and medium access protocols.
The results of these papers are also explained in [11].

The article at hand can be considered as a logical
continuation and extension of these publications.

4.2 Analytical Work on Expected Interference

Several researchers proposed interference models for
random wireless networks. Recent publications include
the following. Rickenbach et al. [18] present a receiver-
centric model of interference. Modeling the network as a
disk graph, interference is determined as the number of
disks overlapping the regarded receiver. Based on this
model, an approximation of the optimal connectivity-
preserving topology in a highway model is derived.

Dousse et al. [19] study the impact of interference
on the connectivity of large-scale wireless multihop net-
works. The total interference is modeled as the weighted
sum of individual interference levels and the back-
ground noise. That paper shows that, for small enough
weighting factors, spatial node densities exist for which
the network contains a large cluster of nodes, enabling
distant nodes to communicate via multiple hops.

Jain et al. [20] model the impact of interference on
network performance using conflict graphs. The pa-
per presents methods for computing lower and upper
bounds on the optimal throughput for a given network
and workload under the assumption that packet trans-
missions at the individual nodes can be finely controlled
and carefully scheduled by an omnipotent central entity.

Win et al. [21] propose a theoretical model represent-
ing the interference in wireless networks. The model is
based on general assumptions, especially a very general
channel model. The authors conduct four case studies,
analyzing the interference of cognitive radio networks,
the interference in wireless packet networks, the spec-
trum of the aggregate radio-frequency emission, and the
coexistence of narrowband and ultrawideband systems.
A comprehensive analysis of one of these case studies,
namely the coexistence of narrowband and ultrawide-
band systems, based on methods from stochastic geom-
etry, is presented in [22].

All these interference models analyze only the ex-
pected interference without considering spatial and tem-
poral correlations. Correlations are, however, of impor-
tance when assessing the performance of a wide range
of communication methods.

4.3 Empirical Work on Interference Correlation

Zhu et al. [23] perform an empirical study on point-to-
multipoint transmission. They conclude that reception
events are highly correlated. It is thus not needed for
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each of the neighbors to individually acknowledge re-
ception. A protocol that reduces the number of acknowl-
edgments is proposed and evaluated by empirical and
simulation-based studies.

Srinivasan et al. [24] propose an empirical measure for
the correlation of the successful reception for different
links. They compare this measure to two commonly
used empirical measures. Results show that the pro-
posed measure performs better in terms of predicting
the performance of certain protocols.

Both papers perform empirical studies on the interlink
correlation of transmission success. The paper at hand
provides a first step toward the goal of backing up these
empirical results with a theoretical background.

5 CONCLUSIONS & RESEARCH DIRECTIONS

This article modeled and analyzed the temporal cor-
relation of interference power in wireless networks.
We considered three sources of correlation — node loca-
tions, channel, and traffic — and based the analysis on
commonly-used modeling assumptions, namely homo-
geneously distributed nodes, Rayleigh block fading, and
slotted ALOHA leading to Poisson-like traffic. Having
been inspired by the work of Haenggi and Ganti, we
derived equations for the correlation coefficient of the
interference power in two consecutive time slots in a
variety of scenarios. These equations turn into closed-
form expressions for practically-relevant path loss expo-
nents α > 2. We also studied limiting cases for the chan-
nel coherence time and message duration approaching
infinity, which provide general upper bounds.

The achieved results and used methodology clear the
way for a more generalized analysis of interference
correlation. A follow-up research topic is to investigate
interference correlation in nonconsecutive time slots,
which could serve as a tool for estimating the minimum
time between two transmissions to achieve uncorrelated
signal-to-interference ratios. Further extensions can be
made by using more complex modeling assumptions,
such as medium access control with carrier sensing
or correlation caused by retransmission protocols. The
ultimate goal is to derive the correlation of the outage
probabilities as a function of the interference correlation.
This would provide a tool for analyzing the performance
of different transmission methods and protocols that
fully account for the effects of interference.
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APPENDIX A
THE CORRELATION BETWEEN INTERFERENCE
VALUES FROM DISJOINT NODE SETS

A given set of nodes N is randomly partitioned into
three disjoint subsets N1, N2, N0. These subsets contain
the fractions N1, N2, 1−N1−N2, respectively, of all nodes
in N . The interference caused by the nodes N1 at a given
point is called I(N1), the one caused by N2 is I(N2).

Theorem 1: The correlation coefficient between I(N1)
and I(N2) without fading is

ρ
(

I(N1), I(N2)
)

= −

√

N1N2

(1−N1)(1 −N2)
. (65)

Proof: An indicator variable γx(N�
) denotes whether

a node x is contained in a set N
�

or not, i.e.,

γx(N�
) :=

{

1 x ∈ N
�

0 else .
(66)

This variable is Bernoulli distributed with variance
N

�
(1 − N

�
). Let us use two indicator variables: γx :=

γx(N1) and γ′
x := γx(N2). Their covariance is

cov(γx, γ
′
x) = E [γxγ

′
x]− E [γx] E [γ′

x] = 0−N1N2 (67)

and cov(γx, γ
′
y) = 0 ∀x 6= y (68)

for two different nodes x and y.
Thus, for given node locations N and no fading (hx =

1), the covariance of the two interference values created
by the two sets can be expressed as

cov (I(N1), I(N2) | N ) =

(5)
= cov





∑

x∈N

κ l(‖x‖) γx,
∑

y∈N

κ l(‖y‖) γ′
y

∣

∣

∣

∣

∣

∣

N





= κ2
∑

x,y∈N

l(‖x‖) l(‖y‖) cov(γx, γ
′
y) (69)

(67),(68)
= −κ2 N1N2

∑

x∈N

l2(‖x‖) . (70)

The variance of the interference created by the first
node set is

var(I(N1) | N ) = var

(

∑

x∈N

κ l(‖x‖) γx

∣

∣

∣

∣

∣

N

)

= κ2
∑

x∈N

l2(‖x‖) var(γx)

= κ2 N1(1−N1)
∑

x∈N

l2(‖x‖) (71)

and a similar expression for var(I(N2) | N ).
Applying (69) and (71) in (2) yields

ρ (I(N1), I(N2) | N ) =

=
−κ2 N1N2

∑

x∈N l2(‖x‖)
√

N1(1 −N1)
√

N2(1−N2) κ2
∑

x∈N l2(‖x‖)

= −

√

N1N2

(1−N1)(1 −N2)
, (72)

which is the correlation coefficient conditioned by the set
of nodes N . The second equation holds if the sum over
all path loss values converges. Since (72) is independent
of N , we have ρ(I(N1), I(N2)) = ρ(I(N1), I(N2) | N ).

Note that the correlation (65) is negative, since the two
node sets are disjoint.

Theorem 2: The covariance between I(N1) and I(N2)
if each link experiences independent Rayleigh fading
is (70), i.e., fading does not change the covariance.

Proof: Using indicator variables as defined above
and the channel state h2

x of node x, the covariance of
the indicator variables and the channel states is

cov
(

γxh
2
x, γ

′
yh

2
y

)

= E
[

γxγ
′
yh

2
xh

2
y

]

− E
[

γxh
2
x

]

E
[

γ′
yh

2
y

]

=

{

E
[

γxγ
′
xh

4
x

]

−N1N2 = −N1N2 for x = y

0 else.
(73)

This result is equal to that of (67), (68). To compute
cov(I(N1), I(N2) | N ) with fading, we use (73) in (69),
which again gives (70), thus proving the theorem.

Note that, although the covariance is not influenced
by fading, the variance in general increases, leading to
a smaller correlation coefficient.

APPENDIX B
INTERMEDIATE RESULTS FOR CASE (0, 2, 1)

ρ (I11, I
′′
11) = −

√

p4Sc(1− Sc)

p4Sc(1− Sc)− p2Sc

ρ(I ′11, I10) = −

√

p3(1− p)Sc

p2 − p+ 1− Sc(p4 − p3 − p2)

ρ(I ′′11, I10) = −

√

p3(1− p)(1− Sc)

−p4 + p3 − p+ 1− Sc(p4 − p3 − p2)

ρ(I10, I01) = −
p(1− p)

p2 − p+ 1

E [var(I ′11 | N )]
α>2
= κ2λ

απ

α− 1

(

p2 −
p3

1 + (c− 1)p

)

·

(

1− p2 −
p3

1 + (c− 1)p

)

E [var(I ′′11 | N )]
α>2
= κ2λ

απ

α− 1

(

p3

1 + (c− 1)p

)

·

(

1−
p3

1 + (c− 1)p

)

E [var(I10 | N )]
α>2
= κ2λ

απ

α− 1
(p− p2)(1 − p+ p2)

E [var(I01 | N )] = E [var(I10 | N )]




