
55

MONEY SYSTEMS IN TEXT

ADVENTURES AND THEIR DESIGN

CHALLENGES

Lea Stella Santner, Wilfried Elmenreich

Text adventure games, also known as interactive fiction, allow players to engage
with the game world by typing commands. These games often feature intricate
puzzles that necessitate correct actions and the combination of specific objects to
progress. Although the concept of money is infrequently encountered within
these games, there are instances where a single coin becomes instrumental in
operating machinery or serves as part of a puzzle. Incorporating a monetary
system into text adventures presents a formidable challenge to the genre. The
introduction of money can disrupt puzzle complexity, enabling players to
bypass cumbersome acquisition tasks by simply purchasing necessary objects.
Despite these hurdles, some text adventures have implemented functional
money systems. This paper addresses the intricate design and implementation
challenges associated with introducing money systems into text adventure
games. This leads to discussions about its impact on narrative choices, such as
deciding between spending or retaining money, and how these decisions
influence the overall storyline, as well as to technical questions regarding the
implementation of the concept using a typical programming language for
interactive fiction, such as Inform. As a case study, the implementation process
of a money system using the Inform 6 programming language and the
PunyInfom Library is presented.

Keywords: Interactive Fiction, Text Adventures, Game Engineering

This paper is part of the book MONEY|GAMES|ECONOMIES, Nikolaus Koenig, Natalie Denk, Alexander Pfeiffer,
Thomas Wernbacher, Simon Wimmer (Eds.), University of Krems Press 2024, ISBN 978-3-903470-14-9, licensed under a
Creative Commons Attribution-NonCommercial 4.0 International License.

MONEY | GAMES | ECONOMIES

56

1. Introduction

A text-based adventure game is a genre of computer games within the wider area
of interactive fiction. While interactive fiction also includes systems where the
user can make inputs via selections without entering text, the interface to the
player in a text-adventure takes place by entering a text string that contains the
players’ intended action to the game. Will Crowther’s game “Adventure”
(Crowther, 1976) is considered the first text adventure and was released in 1976
for the PDP-10 mainframe computer. The game, later renamed Colossal Cave
Adventure, was massively popular among the computer community in the later
1970s and kicked off an era of further text adventure games in the coming years.

As a genre, text adventures are incredibly flexible. While there is a more or less
agreed set on standard verbs (cf. Plotkin, 2010), adding any other custom verbs
with different effects to a game is possible. A text adventure can be implemented
with standard programming languages such as C, C++ (Sutherland, 2014),
Python (Johnson, 2018), or the BASIC programming language (Lampton, 1986;
Montford, 2005), which used to be typically integrated into the ROM of home
computers in the 1980s. A recent example of a simple text adventure written in
BASIC is "Tiny Quest" (Derocher, 2024), which fits into the 3.5 kB BASIC memory
of the VIC 20 (and therefore easily fits on all other systems that typically have
larger memory). On the other hand, there exist dedicated programming
languages and systems for text adventures, most notably Inform (Nelson, 1993),
The Quill (Yeandle, 1983), and the D42 Adventure System (Lesch & Erbsland,
2014) that offer streamlined and specialized tools tailored to the unique demands
of interactive storytelling.

Implementing money systems in text adventures is a challenge for several
reasons: First, on a fundamental level, money comes in units, so unlike many
unique objects in adventure games, one piece of money is like the other, and you
can obtain multiple of them. Second, money is a means to ease trading and
exchange of goods by being a joker item that can be bought or sold for any other
good in a market. In the context of a text adventure, this challenges the creation
of puzzles, which are an intrinsic element of these games. Money obtained in the
game could be used to shortcut the need to obtain an item needed in a puzzle,
thus breaking puzzle complexity. The versatility of money interactions can also
affect playability: the player might spend the money on the wrong items just
because it is possible, ending up with an unsolvable game state. While the last
two issues require to be solved within the context of the particular setup of a text
adventure, we will focus on generically implementing a money system in

MONEY SYSTEMS IN TEXT ADVENTURES AND THEIR DESIGN CHALLENGES

57

Inform6. This system was chosen because it is the programming language that
allows the most complexity for implementing a text adventure among the
possibilities listed above. Inform 7, a newer version of the Inform language, is
quite different from Inform 6. It adopts a natural-language-oriented approach to
source code, which sets it apart from established systems. Because Inform 7 has
a significantly different syntax and is less widely used than Inform 6, it is outside
the scope of this paper.

This paper investigates the topic of money systems in text adventures. In
particular, it contributes three parts: The following section presents a discussion
on the challenges of integrating money systems as a game mechanic in text
adventures. Subsequently, we present an overview of notable text adventure
games with money systems. The third section of the paper elaborates on how
money systems can be implemented in a text adventure using the programming
language Inform 6. The concluding section summarizes the findings and gives
an outlook on possible future work.

2. Money as a Game Mechanic

Literature on money as a game mechanic usually understands the topic as
players spending real money in (mostly online) games (Wohn, 2014), or
interpreting the game as a marketing instrument to advertise virtual goods
(Hamari & Lehdonvirta, 2010). Besides this direct link to real money, findings
suggest that even simulated gambling games using virtual currency may
promote gambling with real money (Armstrong et al., 2018). In addition, in-
game currencies that are connected to the real-world economy also pose a threat
of being misused for money laundry and concealment of money flows (Cloward
& Abarbanel, 2020).

Kinnunen, Alha, and Paavilainen (2016) further suggest that F2P gamers
spending real money on their game will need to develop methods similar to
those used by gamblers who frame or separate play money from other forms of
money, such as money for groceries. Leijnen, Brinkkemper, and Bouwer (2015)
discuss games with a money system and procedurally generated goods as a
learning game for a general audience, teaching them how banks function within
a market-guided economy.

MONEY | GAMES | ECONOMIES

58

A discussion on currency in fictional works 35F35F

1 describes challenges regarding
naming, appearance, and possibilities of obtaining money in fiction, which also
apply to interactive fiction/text adventures. When naming currencies, authors
must consider cultural associations to maintain coherence within their worlds
and to avoid associations with existing currencies (Athans & Salvatore, 2010).
Narrative challenges arise in ensuring the credibility and stability of these money
systems, particularly in the face of futuristic technology or magical elements
(Gliddon, 2005). Some currencies are inherently valuable within their fictional
universes, serving as more than mere mediums of exchange, as seen in works
like Frank Herbert's Dune series or Iain M. Banks's Consider Phlebas.

Text adventures, being a form of interactive fiction, face unique challenges
related to fictional currencies. Critical questions include: Is the currency name
appropriate for the world setting? Does it make sense within the context of
advanced technology or magical abilities? As seen in some fictional works where
currencies transcend their role as mere exchange mediums, money systems in
text adventures are expected to have a similar impact, particularly given the
complex nature of their puzzles. It is impractical for players to gather enough in-
game money to buy all quest items outright. Instead, some items must be
acquired through traditional means, with the money system playing only a
partial role in item acquisition.

3. Text Adventures with Money Systems

Colossal Cave Adventure, being the first game in the genre, did not have a
dedicated money system, but valuables and treasures that could be discovered
in the caves, which could be seen as the predecessor of an in-game currency.

In-game currencies have been used in several text adventures, most notably in
games by Infocom. Table 1 gives an overview of some examples: The names of
the currencies are typically very diverse: there are Zorkmids in the classic text-
based adventure game series Zork (Infocom, 1980,1981,1983) (referred to as
“coin” in Zork I), Buckazoids in the interactive fiction games Planetfall (Infocom,
1983) and its sequels, the humorous use of "Flotsam and jetsam" in the text
adventure The Hichhiker's Guide to the Galaxy (Infocom, 1984). Players typically

1 https://list.fandom.com/wiki/List_of_fictional_currencies

MONEY SYSTEMS IN TEXT ADVENTURES AND THEIR DESIGN CHALLENGES

59

obtain money by exploring the game world, discovering treasures, solving
puzzles, and completing tasks. The money is then used to purchase goods and
services (sometimes via a bribe) and advance the player's character. However,
the use of money in these adventures is always limited to specific parts of a
puzzle, unlike in, for example, economic simulation games where money is the
principal means to purchase all relevant goods and services.

Fallen London (Failbetter Games, 2009) is a bit of a different case: it is a free-to-
play text-based open-world RPG played in the web browser. In Fallen London,
Echos, Pennies, and Shillings serve as the primary forms of currency in the dark
and mysterious Victorian setting. Players can earn these currencies by
completing storylines, engaging in trade, and participating in challenges. They
are essential for purchasing goods and services and advancing the player's
character. Since the game is a multiplayer game, the money also serves as a unit
of exchange for trading between players.

Table 1. Text Adventures with Money Systems

Game In-game currency

Colossal Cave Adventure
(1976)

Valuables and treasures

Fallen London (2009) Echoes, pennies, shillings

Planetfall (1983) Buckazoids

The Hitchhiker's Guide to the
Galaxy (1984)

Flotsam, jetsam

Zork (1980-1982) Zorkmids

4. Case study: Implementation of a Money System in
Inform 6

Inform 6 is a sophisticated system tailored to the creation of narrative-driven text
adventure games. It offers a comprehensive suite of tools to facilitate the
translation of textual descriptions into virtual worlds. At its core, Inform consists
of a library of pre-defined elements and a compiler that allows authors to

MONEY | GAMES | ECONOMIES

60

construct complex textual game environments with relative ease. The foundation
of Inform is its library, which includes a parser and a world model. The parser
acts as the interface between the player and the game world, interpreting the
commands typed and executing the corresponding actions within the virtual
environment. At the same time, the world model defines a set of standard rules
that govern interactions within the game, such as visibility constraints in the
absence of light sources.

Since its establishment in 1993, Inform has become a significant tool for creating
interactive fiction in various natural languages. It has developed into a complete
software suite, including a compiler and a library, that is essential for designing
games of any size. Its versatility extends beyond entertainment, finding
applications in commercial game prototyping and academic contexts alike.
According to the original Inform 6 page 36F36F

2, Inform is used in a range of educational
settings, from computer science curricula to theoretical architecture seminars. In
her blog, Emily Short (2019) lists resources and examples for pedagogical uses of
interactive fiction (IF) in an educational setting, covering its application in
teaching English, language arts, literature, history, and foreign languages. She
also provides specific examples of IF games written in Inform 6, Inform 7, and
Twine. Although newer tools and languages have emerged, Inform 6, with its
text-based syntax, remains relevant for text adventures due to its robustness,
simplicity, and community support.

In the following, we sketch an implementation of a money system for the
programming language Inform 6. Inform, being a domain-specific language for
text adventures, already supports the implementation of objects that can be
discovered and acquired when playing a game. A money system is more intricate
because it requires objects (coins) that can be obtained multiple times and that
need to be used together in case an object is purchased that costs a multitude of
coins (which is usually the case).

While there exist several tutorials for implementing adventure games with
Inform, this guide pertaining to money systems that are presented here has been
elaborated from scratch - to our knowledge no such resource exists up to now.
As a prerequisite, we assume that the reader is already familiar with the basic
usage of Inform 6 and the PunyInform library. A recommended tutorial is the

2 http://www.inform-fiction.org/introduction/index.html

MONEY SYSTEMS IN TEXT ADVENTURES AND THEIR DESIGN CHALLENGES

61

Inform Designer’s Manual (Nelson, 2001) and the PunyInform Manual
(Berntsson & Ramsberg, 2023).

Listing 1. Header section of .inf source file

You start by defining constants such as Story, Headline, etc. All constants should
be defined before you include “globals.h”.

The "Initialise" routine is a code block that executes certain actions when the
game is initialized or started. In this case, it simply prints the message "That’s
how you do it" to the screen.

As the next step, it is necessary to add the routines that calculate the object’s
depth and its final destination (Listing 2):

MONEY | GAMES | ECONOMIES

62

Listing 2. Routines

The overall implementation of the adventure game is in a single .inf file. The
routines will be added where the comment "! routines here" is placed in Listing1.

MONEY SYSTEMS IN TEXT ADVENTURES AND THEIR DESIGN CHALLENGES

63

The routine “ObjDepth” calculates the depth of an object within its object
hierarchy. It starts with the given object “p_obj” and iterates through its parent
objects using a while loop. For each parent object it increments a counter “_i”.
Finally, it returns the value of “_i”, which represents the depth of the object
within its hierarchy. Essentially, it counts how many levels of parent objects the
given object has until it reaches the top parent.

The routine called “ChooseObjectsFinal” sorts objects stored in an array “p_arr”
by their group membership and depth. It iterates over each object and checks if
it has a property called “same_group”. If it does, it compares its depth to other
objects in the same group. Objects with lower depths are moved to the front of
the array. If there are objects from other groups, it continues processing,
otherwise it stops and returns. The routine essentially organizes objects by group
and depth.

MONEY | GAMES | ECONOMIES

64

Listing 3. Classes

The classes will be added where the comment "! classes here" is placed in
Listing1.

The “Coin” class defines the behavior and attributes of coins in the game. It
contains an attribute called name, which defaults to “,//” (a placeholder). It also
contains a method called “parse_name”, which is responsible for parsing the
name of a coin during gameplay input processing. This method checks the next

MONEY SYSTEMS IN TEXT ADVENTURES AND THEIR DESIGN CHALLENGES

65

word in the input and adjusts the parsing based on matches with the name
attribute, “coin”, or “coins//p” (plural form). Finally, it returns the number of
words used during parsing. The “Coin” class thus facilitates accurate recognition
and processing of coin-related commands by handling variations in coin names.

The “SilverCoin” and the “GoldCoin” classes extend the functionality of the
“Coin” class, specifically for representing silver and gold coins in the game. They
introduce attributes such as “same_group”, “name” and “short_name” to define
coins. They also include a method called “list_together”, which handles the
inventory listing of silver and gold coins, ensuring accurate identification and
labeling in the game environment.

Listing 4. Example game code

Additional game code will be added where the comment "! example game code
here" is placed in Listing 1.

The "Library" object represents a location within the game environment that is
described as a library. It contains a description that provides information about
the environment, stating "You are in a library." Additionally, it is specified to
have light, indicating that the location is bright. The "Table" object represents a

MONEY | GAMES | ECONOMIES

66

table in the game environment. It is defined with the name 'table' and specified
to be a supporter, indicating that it can hold other objects. It is also open and
enterable, suggesting that characters or items can be placed on or inside it during
gameplay. The "Box" object is described as a box in the game. It is named "box".
The inside of the box is further described with the text "It feels so nice, standing
in the box." This object is specified as a container, indicating that it can hold other
objects. It is set to be open, openable, and enterable, suggesting that characters
or items can be placed inside it during gameplay and that it can be interacted
with by opening it.

The provided example of the implementation of a monetary system in Inform 6
defines classes such as “Coin”, “SilverCoin”, and “GoldCoin”, allowing for the
creation of various types of currency within the game world. Each coin is
associated with its respective class ("GoldCoin" or "SilverCoin") and is uniquely
identified by a numerical suffix. These instances represent individual coins that
can be interacted with separately within the game. The presented approach
enables efficient tracking and management of similar coins within the player's
inventory, with clear inventory management features. Players can seamlessly
interact with monetary objects, including picking them up, dropping them, and
potentially using them for in-game transactions or interactions. Descriptive
content for monetary objects is supported, enhancing player immersion and
understanding of the game's economic elements.

Although the code example shows proficiency in handling basic monetary
systems, it needs to be extended when dealing with more complex economic
interactions. Advanced economic features, such as intricate trading mechanisms
or dynamic market systems, may require additional implementation beyond the
capabilities provided in the code. The debugging and testing tools for the
monetary system within the code snippet may be limited, which can complicate
the identification and resolution of issues related to monetary interactions.

5. Conclusion

This paper explored strategies for integrating the concept of currency into text
adventures without compromising puzzle-solving intricacies. In particular, a
challenge arises when puzzles traditionally have a singular solution whereas a
currency system introduces a multitude of decision points. Generally, money
systems should be introduced with care, even if they do not involve real money.
Our literature research in Section 2 suggests that even simulated gambling

MONEY SYSTEMS IN TEXT ADVENTURES AND THEIR DESIGN CHALLENGES

67

systems can negatively affect gamers in real life. For game economies that are
connected to real-world money, there is the risk of adverse effects on players
spending significant money in order to perform well in-game. However, the
described effects typically apply to online games, where players employ all kinds
of means to outperform each other.

Money systems in interactive fiction games come with distinct challenges. They
need to align with the theme and be carefully managed. Players should not
gather enough in-game money to purchase all quest items at once. Traditional
methods should still be necessary for obtaining several items, with the money
system playing a minor role.

The case study in Section 4 shows how such a money system can be implemented
in Inform 6. While the overall effort is concise, the implementation steps are
intricate due to the complexity and versatility of the Inform programming
language. The guide included in this paper thus is intended to serve as an enabler
for implementing text adventures with meaningful and game-enhancing money
system mechanics. In future work, we expect the implementation of money
systems in Inform to become more accessible by providing the necessary steps
in the form of a library or being supported by a tool. What remains further open
are test strategies for games with money systems. The versatility of money
introduces complexity for both players, who may welcome new possibilities, and
testers, who will face considerable challenges. Therefore, a future convenient-to-
use money system will benefit from an automated testing approach.

Acknowledgments

The work leading to these results has received funding from the Federal Ministry
for Climate Action, Environment, Energy, Mobility, Innovation and Technology
Austria (BMK), from the HTBLuVA Villach, and its parent association.

About the Authors

Lea Stella Santner is a student of the HTL Informationstechnologie in Villach and
an associate student of psychology and informatics at the University of
Klagenfurt. Her interests cover Software and Web development, as well as game
engineering, virtual worlds, character design, storytelling, and game graphics.

MONEY | GAMES | ECONOMIES

68

Lea was working with the Smart Grids group at the University of Klagenfurt in
July 2023 on the analysis implementation of different text adventure systems.
The work involved devising an Italian and German grammar module for the
PunyInform library and the evaluation of money systems in interactive fiction
games.

LinkedIn: lea-santner-45a50228b

Wilfried Elmenreich is professor of Smart Grids at the Institute of Networked
and Embedded Systems at the Alpen-Adria-Universität Klagenfurt, Austria. His
research interests include intelligent energy systems, self-organizing systems,
and technical applications of swarm intelligence. Wilfried Elmenreich is a
member of the Senate at the Alpen-Adria-Universität Klagenfurt, Counselor of
the IEEE Student Branch, and is involved in the master program on Game
Studies and Engineering. He is the author of several books and has published
over 200 articles in the field of networked and embedded systems. Elmenreich
researches intelligent energy systems, self-organizing systems, and technical
applications of swarm intelligence.

LinkedIn: wilfriedelmenreich
Website: https://mobile.aau.at/~welmenre/

References

Nelson, G. (2001). The Inform Designer’s Manual, Fourth Edition.

Crowther, W. (1976). Adventure (also known as Colossal Cave Adventure) PDP-10 game
published via ARPANET.

Johnson P. (2018). Make Your Own Python Text Adventure. Apress.

Sutherland, B. (2014). Text Adventure. In: C++ Game Development Primer. Apress,
Berkeley, CA. https://doi.org/10.1007/978-1-4842-0814-4_6

Lampton C. (1986). How to Create Adventure Games. Ed. Franklin Watts; Library
Binding Edition

Montford N. (2005). Twisty Little Passages - An Approach to Interactive Fiction. MIT
Press.

Plotkin A., Albaugh L. (2010). How To Play Interactive Fiction (An entire strategy guide
on a single postcard). People’s republic of interactive fiction. http://pr-if.org/doc/play-if-
card/

MONEY SYSTEMS IN TEXT ADVENTURES AND THEIR DESIGN CHALLENGES

69

Derocher, R.J. (2024). Tiny Quest. Computer Game. Binary Legends.
https://csdb.dk/release/?id=239276

Short, E. (2019). Mailbag: Pedagogical Uses of IF in the Classroom. Blog: Emily Short's
Interactive Storytelling. Retrieved from https://emshort.blog/2019/09/10/mailbag-
pedagogical-uses-of-if-in-the-classroom/

Nelson G. (1993). Inform. Programming Language. https://ganelson.github.io/inform-
website/

Berntsson J. & Ramsberg F. PunyInform. Library for Inform 6.
https://github.com/johanberntsson/PunyInform

Yeandle G. (1983). The Quill. Computer Software. Gilsoft.

Lesch, S.& Erbsland T. (2014) D42 Adventure System: Klassische Adventures selbst
entwickeln für den Commodore 64/128. BoD – Books on Demand.

Wohn, D. Y. (2014). Spending real money: Purchasing patterns of virtual goods in an
online social game. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI '14) (pp. 3359–3368). Association for Computing Machinery.
https://doi.org/10.1145/2556288.2557074

Hamari, J., & Lehdonvirta, V. (2010). Game design as marketing: How game mechanics
create demand for virtual goods. International Journal of Business Science & Applied
Management, 5(1), 14–29. https://ssrn.com/abstract=1443907

Armstrong, T., Rockloff, M., Browne, M., et al. (2018). An exploration of how simulated
gambling games may promote gambling with money. Journal of Gambling Studies, 34,
1165–1184. https://doi.org/10.1007/s10899-018-9742-6

Cloward, J. G., & Abarbanel, B. L. (2020). In-Game Currencies, Skin Gambling, and the
Persistent Threat of Money Laundering in Video Games. UNLV Gaming Law Journal,
10(1), Article 6. Retrieved from https://scholars.law.unlv.edu/glj/vol10/iss1/6

Kinnunen, J., Alha, K., & Paavilainen, J. (2016). Creating play money for free-to-play and
gambling games. In Proceedings of the 20th International Academic Mindtrek
Conference (AcademicMindtrek '16) (pp. 385–392). Association for Computing
Machinery. https://doi.org/10.1145/2994310.2994336

Leijnen, S., Brinkkemper, P., & Bouwer, A. (2015). Generating game mechanics in a model
economy: A MoneyMaker Deluxe case study. Paper presented at the 6th Workshop on
Procedural Content Generation in Games (PCG 2015), Pacific Grove, United States.

Athans, P., & Salvatore, R. A. (2010). The Guide to Writing Fantasy and Science Fiction.
Adams Media.

Gliddon, G. (2005). The Greenwood encyclopedia of science fiction and fantasy, Volume
2. Greenwood.

Infocom. (1980). Zork I [Computer game]. United States: Infocom (Developers: Tim
Anderson, Marc Blank, Bruce Daniels, Dave Lebling).

Infocom. (1981). Zork II [Computer game]. United States: Infocom (Developers: Tim
Anderson, Marc Blank, Bruce Daniels, Dave Lebling).

MONEY | GAMES | ECONOMIES

70

Infocom. (1982). Zork III [Computer game]. United States: Infocom (Developers: Tim
Anderson, Marc Blank, Bruce Daniels, Dave Lebling).

Infocom. (1984). The Hitchhiker's Guide to the Galaxy [Computer game]. Cambridge,
MA: Infocom (Developers: Douglas Adams, Steve Meretzky).

Infocom. (1983). Planetfall [Computer game]. Cambridge, MA: Infocom (Developer: Steve
Meretzky).

Failbetter Games. (2009). Fallen London. [Online Game]. Failbetter Games.

Nelson, G. (2001). The Inform Designer’s Manual (4th ed.). (G. Rees, Ed.). Retrieved from
https://www.inform-fiction.org/manual/DM4.pdf

Berntsson, J., & Ramsberg, F. (2023). PunyInform: An Inform library for writing compact and
fast text adventures (Version 5.3). Retrieved from
https://github.com/johanberntsson/PunyInform/wiki/manual

