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Abstract

This paper presents an approach for energy efficient path planning during autonomous mobile robot exploration. The
idea is for a robot to efficiently explore the environment and periodically return to the starting point of the exploration
for recharging the battery. The focus is to reduce the overall travel path as locomotion is the largest energy consumer.
Simulations show that the path can be reduced by more than 25 %. A proof of concept is developed to demonstrate the
feasibility on hardware.

1 Introduction
Mobile robots can be employed for many scenarios. These
are reconnaissance, coverage, search and rescue, and plan-
etary missions, to name a few. In most cases, robots have
to explore and map the previously unknown environment
before continuing their mission. This has to be done au-
tonomously due to either physical distance, life threatening
environments, or a large number of robots.
For fully autonomous exploration, a robot needs to plan the
path through the environment based on the current energy
level as well as interrupt exploration for recharging the bat-
teries. The path planning is done online and behavior based
since no optimal plan can be precomputed for an unknown
environment. The contribution of this work is an energy-
aware exploration (EA) strategy that takes into account ef-
ficient path planning based on the current battery level as
well as timely recharging of batteries for larger maps.
The path planning uses frontier based exploration [1],
where a robot identifies points in a two-dimensional (2D)
environment that separate known and unknown space.
These points are called frontiers. Selecting the frontiers in
the right order is a crucial process as it defines the path on
which a robot travels during exploration. This path should
be as short as possible [2]. Redundancies, where the robot
visits certain points in the environment more than once,
should be avoided. We derive a general strategy that re-
duces the redundancy of the traveling path considerably.
We use an adaptive threshold for the robot to decide when
to return to the docking station for recharging. This thresh-
old depends on the movement of the robot, its power con-
sumption, and the current state of the environment. A sim-
ilar approach is proposed in [3] where it is shown that a
static threshold is not flexible and does not make the best
use of the robot’s remaining energy.
We show by simulations that our strategy helps to reduce
redundancy in traveling and increases the efficiency of ex-

ploring unknown environments. Additionally, a proof of
concept is developed to show the feasibility on hardware.
The rest of the paper is organized as follows. Section 2 dis-
cusses the related work, Section 3 gives a description of the
model, exploration strategy, and the implementation, Sec-
tion 4 describes the simulation setup as well as the results,
and Section 5 concludes the paper.

2 Related Work
2.1 Energy-Awareness and Recharging
Different aspects of EA have already been covered. Most
importantly, when the battery state of charge (SOC) be-
comes low, a robot has to interrupt the current task and
recharge its battery, e.g., at a docking station. One ap-
proach is to simply monitor the battery voltage and ini-
tiate a recharging procedure once it drops below a static
threshold [4]. More sophisticated approaches estimate the
SOC more accurately [5] while others consider additional
parameters to more precisely decide on the right moment
for recharging [3, 6]. In [3] the expected gain by an oper-
ation is calculated and related to the risk of running out of
power. This approach is more flexible and efficient, com-
pared to a static threshold approach. In [6] static and adap-
tive threshold approaches are compared to a bio-inspired
rate-maximizing foraging approach which comes close to
optimal. In this work we use an adaptive threshold ap-
proach.

2.2 Offline Path Planning
Other work focuses on computing optimal paths with re-
spect to energy consumption. In [7] a method is described
where mobile robots perform predefined tasks at specific
locations in the environment. The robots have to complete
all tasks and in between recharge their battery at a docking
station to stay alive. The path planning algorithm decides
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on the best order in which to complete the tasks and the
time at which to return for recharging. The authors of [8]
also present a method that plans paths to specific points of
interest (POIs) in the environment to gather information.
The focus is not recharging though but the communication
connectivity to a base station. The order in which to visit
the POIs is optimized with regard to energy consumption
of a mobile robot. When all information has been collected
the robot has to come close enough to the base station to
transmit this information. Both approaches try to reduce
the energy consumption of robots by deciding on the order
in which to visit the locations in the environment. The ma-
jor difference to our work is that they assume an already
known environment and do an offline optimization of the
path planning.

2.3 Energy Saving
Besides reducing the overall operational time for saving
energy, other methods have been investigated. Firstly, the
consumed energy can be reduced by avoiding operations
that have a high power consumption. Sometimes an op-
eration can be carried out using a slower but more en-
ergy efficient method [9]. In the exploration scenario this
could be choosing paths in a way that robots can move
steadily without frequent accelerations and decelerations.
Secondly, energy consumption can be reduced by reducing
the frequency that certain components of robots are used.
It might make sense to shut off those components, put them
in sleep mode while they are not required for the mission,
or simply adapt the frequency of their use to the current re-
quirements [2]. In the exploration scenario this can be the
reduction of the sensing frequency but it can slow down
the exploration process if not carefully set. Finally, robots
can be put to sleep mode while they have no task or while
they wait for a specific event. During exploration this only
makes sense if there are multiple robots competing for one
docking station. If the docking station is occupied other
robots might need to wait until it becomes available again.

2.4 Trajectory Planning
Opposing to theses approaches some work focuses on plan-
ning the actual trajectory to a goal. The approach described
in [9] finds the route and determines the velocities of a mo-
bile robot so that it consumes as little energy as possible.
In [10] this approach is enhanced by path planning and put
to the test in an exploration scenario. The focus is on en-
closed indoor environments where robots do not run out of
power. In our work we focus on selecting the order of the
goal points in large spaces, not finding optimal trajectories.
Instead we use search algorithms like Dijkstra [11] or A*
[12] which perform sufficiently good for our scenario.

2.5 Frontier Selection
The main task during exploration is to select the next goal
for the robot to travel to. The most common approach is
introduced in [1]. The idea is to always steer robots to the
closest frontier and thereby keep the traveled path relatively
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Figure 1 Components of a mobile robot.

short. Another approach is to select the frontier according
to the expected information gain [13, 14]. The informa-
tion gain is a very difficult measure though since it heavily
depends on the environment. The next-best-view principle
takes a similar approach while trying to minimize the un-
certainty of a robot’s pose [15, 16, 17]. Other approaches
consider the danger [18] or difficulty [19] of the path to
the frontier. While there are approaches for considering
the energy consumption of a path [20, 21] the focus is not
on frontier selection in unknown environments. Often the
communication capabilities at the goal or on the path are
of importance [22, 23]. It has been shown that the ori-
entation of a robot plays an important role for path plan-
ning [10]. This approach uses an orientation based method
where the frontiers are selected in a clockwise order start-
ing from a robot’s left direction. It is especially suitable for
enclosed indoor environments. In this work we combine
multiple criteria into a cost function as has been proposed
in [24, 25]. Thereby we can combine criteria regarding the
energy as well as the exploration efficiency.
The following section describes the proposed exploration
strategy that plans the path of a robot in an unknown en-
vironment in a way that the limited capacity of the robot’s
battery is taken into account.

3 Energy-Aware Exploration
3.1 Energy Model
We consider the exploration of an unknown environment
with a single robot. It is assumed that the robot is powered
by a battery with limited capacity so that it has to recharge
periodically, e.g., at a docking station. We furthermore as-
sume that the computer is supported by its own battery last-
ing at least as long as and being recharged together with
the robot batteries. This allows the robot to continuously
explore the surrounding environment. The robot’s power
consumption is modeled considering the different compo-
nents of a mobile robot as depicted in Figure 1. The com-
puter is responsible for all high-level computations, such
as path planning or map generation; the microcontroller is
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Table 1 Power consumption breakdown of the mobile
robot while it is moving.

Component Power consumption
Sonar 0.6075 W 3 %
Lidar 8 W 36 %
Micro controller 4.6 W 20 %
Locomotion 9.17 W 41 %
Total 22.38 W 100 %

responsible for reading the sensor data as well as generat-
ing the commands for the locomotion. In the following we
do not consider the computer and its battery in our model.
The power consumption of computers for different work-
loads has been analyzed before, e.g., in [26].
To carry out realistic simulations we base our model on the
Pioneer 3-DX robot by Adept Technology, which is a pop-
ular research robot. Measurements on its power consump-
tion have been done in [2]. For simplification purposes we
consider only the two discrete values Pm and Ps which rep-
resent the power consumption when the robot is moving
at maximum speed of vmax = 1.2m/s and when it is sta-
tionary, respectively. Using vmax to compute the moving
power consumption assures that the battery charge is never
overestimated. When the robot is moving, all components
draw power; when it is stationary only the microcontroller
and the sensors do. This is because the robot’s only ac-
tuator is its locomotion. The robot is equipped with two
sensors: an active sonar sensor used for collision avoid-
ance and a laser scanner used for mapping the environment.
The sonar sensor can be modeled with a constant value of
Psonar = 607.5mW. The laser scanner is assumed to be the
UTM-30LX by Hokuyo Automatic which can be modeled
with a constant value of Plidar = 8W. The microcontroller
uses a constant value of PµC = 4.6W. The only time vari-
ant consumer is the locomotion. Its power consumption
depends on the velocity v of the robot:

Ploc(v) = 0.29W+7.4
W

m/s
· v (1)

The individual power consumers are listed in Table 1.
This yields the total power consumption of the moving and
stationary robot, respectively:

Pm = Psonar +Plidar +PµC +Ploc(vmax) = 22.38W (2)
Ps = Psonar +Plidar +PµC +Ploc(0) = 13.50W (3)

Using these values, the battery’s charge El is updated at a
rate of 0.5 Hz. This leads to the battery’s SOC

SOC =
El

Et
(4)

with the battery’s maximum charge Et. El can also be used
to compute the distance dl that the robot is still able to travel

dl =
El

Pm
· v (5)

where v is the average speed of the robot. It becomes obvi-
ous that the robot has the limited range of

r =
Et

Pm
· v. (6)

With the requirement that the robot should not run out of
power it can therefore only explore the area that is at most r

2
away from the docking station. In free space the maximum
explorable area therefore is a circular area with radius r

2 .
The objective of the energy-aware exploration is to fully
explore the area defined by (6) using as little energy as pos-
sible. We developed the exploration strategy described in
the following subsection to achieve this.

3.2 Exploration Strategy
The main objective of the exploration strategy is to save
energy. This means to finish the exploration as fast as pos-
sible while traveling on the shortest possible path. To ex-
plore unknown space, the robot moves to frontiers [1]. Our
approach consists of a cost function in the global path plan-
ner of the robot. With this cost function the planner selects
the goal which the robot navigates to. The selection of the
goal follows a strategy that considers the battery charge of
the robot El and its orientation as well as the location of
the robot and the frontiers in the environment. The planner
relies on no further information as the environment is only
partially observable. The strategy employed by the plan-
ner consists of two steps described in the following subsec-
tions: (1) Check Remaining Energy and (2) Select Goal.

3.2.1 Check Remaining Energy
As a first step the planner checks the remaining battery
charge El of the robot. With (5), it is able to compute the
distance dl that the robot is able to travel before running
out of power. Next, the planner iterates over all frontiers
and computes their distances from the robot’s current po-
sition dg and their distances from the docking station dgb.
All frontiers that satisfy the condition

dl > dg +dgb (7)

are considered as goal candidates. If there are no frontiers
satisfying (7), the robot returns to the docking station for
recharging. This approach lets the planner adaptively de-
cide when to return for recharging, depending on the bat-
tery charge and the exploration opportunities in the cur-
rent neighborhood of the robot. This adaptive threshold
gives the planner more flexibility compared to the naive
approach where the robot returns for recharging once the
battery charge drops below a static threshold. It assures
that the robot keeps exploring as long as possible with one
battery charge before returning for recharging. The robot
finished the exploration by completely exploring the sur-
rounding environment if there are no frontiers in reach after
recharging.

3.2.2 Select Goal
The second step is to select the goal from the list of fron-
tiers. This is a very important step as it defines the path
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the robot travels. As the robot should travel on the shortest
possible path, this path needs to have as little redundancy
as possible. To achieve this we propose the cost function

f = w1 ·dg +w2 ·dgb +w3 ·dgbe +w4 ·θrel (8)

which is evaluated for each frontier. The path planner se-
lects the frontier as goal that minimizes the cost function
f .
The cost function consists of four parameters that are
weighted by the weights wi, i∈ [1,4]. The weights are used
to tune the parameters for specific environments. The first
parameter dg is the distance from the robot to the frontier; it
ensures that the planner prefers short paths. The second pa-
rameter dgb is the distance from the frontier to the docking
station, which keeps the robot close to the docking station.
The third parameter dgbe is very similar but it depends on
the current battery charge El. It is defined by

dgbe =

{
−dgb El > 0.5 ·Et

dgb El ≤ 0.5 ·Et
. (9)

This ensures that in the beginning, the planner prefers fron-
tiers which are further away from the docking station. Once
the robot’s battery starts to deplete, the planner prefers
frontiers closer to the docking station. Eventually, when the
robot has to recharge, it is close to the docking station and
and does not have to travel a long distance through already
known space. The final parameter θrel relates the robot’s
orientation to the direction of the frontier. It is defined by

θrel =
1
π
·
(
π−

∣∣∣∣θr−θg
∣∣−π

∣∣) (10)

where θr = atan2(∆xr,∆yr) is the direction the robot came
from and θg = atan2(∆xg,∆yg) is the direction from the
robot to the frontier. By minimizing θrel the planner prefers
frontiers that are straight ahead and avoids frontiers where
the robot has to turn around and go back the way it came.
The exploration strategy is summarized in Algorithm 1.
The positions pr, prp, pf, pb, and pg are always speci-
fied as x and y coordinates. Four functions are defined:
frontiers() retrieves a list of the currently available
frontiers, battery_charge() reads the current charge of
the robot’s battery, and avg_speed() computes the aver-
age speed at which the robot traveled so far. The implemen-
tation of the distance() function depends on the environ-
ment: in free space it computes the Euclidean distance be-
tween two points, otherwise it needs to implement a search
algorithm like Dijkstra [11] or A* [12].

3.3 Implementation
A first implementation of Algorithm 1 is done in MAT-
LAB. The exploration is carried out on 2D maps repre-
sented by an array, where each array element can be either
free or occupied. The robot explores the map by moving
to frontiers and marking all array elements within its sen-
sor range that are not occluded by obstacles as explored.
Frontiers are defined as array elements where at least one

Algorithm 1: Exploration Strategy
Global parameters:

• Docking station position pb

• Battery capacity Et

• Weights wi, i ∈ [1,4]

• Power consumption Pm

pr← pb // initial position of robot

prp← pb // prev. robot position

while true do
Pf←frontiers() // list of frontiers

El←battery_charge()

v←avg_speed()

fmin← ∞

pg← pr

dl← El
Pm
· v

foreach pf in Pf do // loop all frontiers

dg←distance(pr,pf)

dgb←distance(pf,pb)

if dl > dg +dgb then // frontier in reach

if El > 0.5 ·Et then
dgbe←−dgb

else
dgbe← dgb

end
θrel← 1

π
·(

π−
∣∣∣∣atan2

(
pr− prp

)
− atan2(pf− pr)

∣∣−π
∣∣);

f ← w1 ·dg +w2 ·dgb +w3 ·dgbe +w4 ·θrel
if f < fmin then // select frontier

fmin← f
pg← pf

end
end

end
if pr = pg then // no frontier in reach

if pr = pb then // robot at dock. station

break // end of exploration

else
pg← pb // go recharging

end
end
prp← pr
pr←move_robot(pg)

end

neighbor is unknown. Adjacent frontiers are grouped into
a single frontier up to a length corresponding to the sensor
range. This reduces the computational complexity and the
traveling overhead as visiting this single frontier also ex-
plores the adjacent frontiers that are in sensor range. For
simplification the battery charge is computed by only con-
sidering the traveled distance of the robot. This speeds up
the simulations as no timer is required to keep track of the
stationary periods of the robot. The paths for the robot as
well as their distance are computed using the A* algorithm.
A second implementation is done in the robot operating
system (ROS) using the Stage simulator [27]. ROS pro-
vides a very realistic environment and even allows to exe-
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cute the code used for simulations on an actual robot hard-
ware platform. This can then be used to verify the more
abstract simulations in MATLAB. For the exploration pro-
cess the explorer node described in [28] is used as a ba-
sis. It is extended by the energy-aware strategy. To take
care of the battery simulation the package energy_mgmt
is implemented. It includes the battery node that keeps
track of the current state of charge of the battery. It fre-
quently publishes the remaining battery percentage as well
as the distance the robot is able to travel. During simula-
tions this node decreases the battery charge according to
the model described in Section 3.1. When the robot re-
turns to the initial position of the simulation the battery
node increases the battery charge and frequently publishes
the remaining charging time. Once the charging is finished
the explorer node instructs the robot to continue the ex-
ploration. During physical experiments the battery node
reads the battery charge from the actual battery. This has
been implemented for the TurtleBot robot platform. A
SOC estimation for other hardware platforms is left for
future work. A central part of exploration is simultane-
ous localization and mapping (SLAM). There are several
SLAM implementations for ROS which offer different lev-
els of functionality. To avoid any disturbing effects of the
SLAM components during simulations, SLAM has been
replaced by two nodes: the fake_localization node and the
fake_mapping node. The fake_localization node substi-
tutes for a localization system as a method to provide per-
fect localization in a computationally inexpensive manner.
Similarly, the fake_mapping node, which is an adaption of
the map_server node, simply reads the map information
from the map file and publishes the part of it which has
been explored. This avoids any mapping errors and allows
to focus solely on the performance of the exploration. Fi-
nally, the move_base node is used by the global planner to
steer the robot through the environment. The implemen-
tation is tested experimentally on the TurtleBot platform
using a docking station to demonstrate the feasibility for
real world applications.
The details of the simulations are described in the follow-
ing section.

4 Simulation and Results
4.1 Performance Metric
The main objective of the EA strategy is to explore as much
of the unknown environment as possible while using as lit-
tle energy as possible. The exploration progress can best
be measured by keeping track of the already explored area
in m2. The energy consumption mainly depends on the dis-
tance the robot traveled as well as the time used for explor-
ing. For evaluating the MATLAB and the ROS simulations
equally we therefore choose the explored area as function
of the traveled distance as the performance metric.

4.2 Setup
The environment must be sufficiently large to experience
the effects of energy limitation. The floor plan of a build-
ing is usually not large enough since EA is designed to
work continuously for several hours or even days. There-
fore, the simulations are carried out on excerpts of three
city maps. The first one is simply an empty map represent-
ing free space. This allows an evaluation of the exploration
strategy independent of environment specifics. The second
one is a regular map resembling the Manhattan street map.
The third one is an excerpt of an old town street map ex-
hibiting the typical features of an old town with narrow,
winding streets and some open places.
The robot specifics are mentioned in Section 3.1. The laser
scanner used is the Hokuyo UTM-30LX with a range of
30 m.
The next step is to fix the four weights wi, i ∈ [1,4]. By
assigning values the importance of the parameters of the
cost function can be defined. Different weight configura-
tions correspond to different robot movement patterns. An
exhaustive search is conducted to find the best performing
weight configuration. All weights are varied in the range
[0,250]. For each permutation the exploration process is
simulated in MATLAB to measure the performance. This
process is repeated for different environments as each en-
vironment might have a different set of optimal weights.
First, the search is carried out in free space, i.e., the robot
operates on an empty map without obstacles. If the robot
is to explore 100 % of the environment the best strategy
would steer the robot straight away from the docking sta-
tion until it used up half of its energy and then back to
the docking station. Simulations confirm this assumption
as the best weight configuration for free space (w1 = 10,
w2 = 0, w3 = 9, w4 = 20) leads to a star shaped move-
ment pattern of the robot. This is depicted in Figure 2a
where the docking station is placed in the center, the cir-
cle of blue dots represent frontiers, and the colored lines
represent the robot’s traveled path. This weight configu-
ration assigns zero to w2 which is the weight for the dgb
parameter. This is consistent with the definition of the pa-
rameters as the dgbe parameter is an energy aware adaption
of dgb rendering dgb obsolete. Another typical approach is
to select the frontier closest to the robot’s current position,
named closest-frontier exploration (CF). It is a simpler ap-
proach that focuses on reducing the traveled distance but it
does not consider the actual energy consumption. This ap-
proach is defined by the weights w1 = 1, w2 =w3 =w4 = 0.
Its movement pattern can be seen in Figure 2b.
Next, the search for an optimal weight configuration is car-
ried out on the Manhattan map. The weights found are
w1 = 220, w2 = 21, w3 = 104, w4 = 100.

4.3 Simulation
With the weights defined, the exploration is first simulated
in free space. Figure 3 shows the explored area over the
traveled distance for the EA and CF approaches simulated
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(a) EA (b) CF

Figure 2 Exemplary robot movement patterns in free
space.
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Figure 3 Exploration progress in free space (MATLAB).

in MATLAB. The robot explored 100 % once it cannot
reach unexplored space anymore without running out of
power. For both approaches the exploration progress was
recorded for one single run with the optimized weights.
As these are MATLAB simulations, the battery charge is
defined as the range the robot can travel with one charge.
This range is set to 9000 m. It can be seen that EA shows
an improvement of more than 40 % in traveled distance to
explore the same area.
To show that the results also hold for more realistic sce-
narios the exploration of free space is also simulated using
ROS. The battery charge is set to 10 Wh. As the simu-
lations run much less stable in ROS, 50 runs are recorded
and averaged. The results in terms of average exploration
progress and 5 % / 95 % quantiles can be seen in Figure 4.
They show that the EA approach reduces the required trav-
eling distance by 25 %. The results differ from the ones
shown in Figure 3 as they are based on a more realistic set-
ting. Furthermore, the total explored area is much smaller
because ROS simulations consist of many components that
tend to crash after several hours of operation.
As a next step, simulations are carried out on the Manhat-
tan map using the weight set found above. Figure 5 shows
the explored area over the traveled distance for the EA and
CF approaches simulated in MATLAB. The range of the
robot is set to 1200 m. In this simulation the advantage of
the EA approach is less evident but the traveled distance
is still more than 25 % shorter than with the CF approach.
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Figure 4 Exploration progress in free space with average
and 5 % / 95 % quantiles (ROS).
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Figure 5 Exploration progress on Manhattan map (MAT-
LAB).

Therefore, EA is also useful for environments containing
many obstacles. The exploration progress curve exhibits
many dents that reflect the recharging cycles of the robot.
They are visible because the explored area as well as the
traveled distance is much smaller compared to the previous
simulation.
Finally the exploration is also simulated on the old town
map. Since the weights are not optimized for this kind of
map, all three weight configurations are simulated. This
simulation is meant to show how the EA approach performs
when the weights are not optimized for the underlying map.
The exploration progress is shown in Figure 6 where EA
free corresponds to the EA approach with weights opti-
mized for free space and EA Manhattan corresponds to
the EA approach with weights optimized for the Manhattan
map. The range of the robot is set to 2000 m. Figure 6 il-
lustrates that EA free outperforms both other approaches in
the beginning but the other two approaches catch up later
on. This is due to the irregular structure of the map. How-
ever, during most of the exploration the EA approach out-
performs the CF approach; only towards the end the advan-
tage of EA decreases. Hence, the EA approach also works
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Figure 6 Exploration progress on old town map (MAT-
LAB).
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Figure 7 Exploration performance for varying robot
ranges.

well for scenarios where the structure of the environment is
unknown prior to the exploration but it cannot reveal its full
potential. In many cases the exact map of the environment
is not known but a rough idea of the structures can already
help to improve the parameter weighting to increase the ex-
ploration performance.
All results show that the exploration progresses fast in the
beginning and slows down towards the end. This phe-
nomenon is further analyzed by recording the performance
in explored area per traveled distance for varying robot
ranges. The result of this simulation is plotted in Fig-
ure 7. It can be seen that the performance monotonically
decreases with increasing range of the robot. This means
that the less charge the robot’s battery can carry the higher
the exploration performance. Of course this also means
that the absolute area explorable by the robot is smaller.
The reason is that the robot explores only areas close to the
docking station and spends less time traveling through al-
ready explored areas. This result confirms the observations
from above as in the beginning of an exploration there are
many areas yet to explore and towards the end most areas
are explored and the robot needs to travel very far each time
after recharging to reach those areas.

2·r s

r

Figure 8 Star pattern for optimal exploration of free
space.

4.4 Competitive Analysis
Another method for evaluating the performance of EA is
to compare it to the optimal solution. To compute the opti-
mal solution, full knowledge of the environment is required
and the computation is done offline. For the exploration
scenario the algorithm for computing the optimal solution
depends on the map type. For free space it can be computed
using the star pattern described in Section 4.2. It is depicted
in Figure 8 where r is the robot range from (6) and rs is the
sensor range. To completely explore the reachable environ-
ment the robot has to visit n = 2π·r/2

2·rs
points at distance r/2.

This yields a total path length of

d = n · r = π
r2

2 · rs
. (11)

In the simulation setup described above r is set to 9000 m
and rs to 30 m. This yields a total path length of
4.24 ·106 m in the optimal case. In the simulations the
robot has to travel 6.14 ·106 m to finish the exploration.
This path is only 45 % longer than the optimal path which
is a reasonable good result considering that the robot has
no prior knowledge about the environment.

5 Conclusion
In this paper we presented a strategy for energy-aware ex-
ploration (EA) of unknown environments with a mobile
robot. With this strategy the robot can explore an environ-
ment more efficiently and with higher autonomy. The strat-
egy implements a cost function that considers the robot’s
battery charge to select frontiers during the exploration.
Furthermore this strategy uses an adaptive threshold to de-
cide when to return to the starting point of the exploration
for recharging at a docking station. Thereby the robot can
autonomously explore large environments without the need
for a human operator. A proof of concept on the TurtleBot
platform implemented in ROS shows the feasibility on ac-
tual hardware.
Future work will focus on coordinating multiple robots to
extend the range that poses a hard limit on the explorable
area by a single robot.
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