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Abstract. The integration of renewable energy sources increases the complexity in maintaining the power grid. In particular, the
highly dynamic nature of generation and consumption demands for a better utilization of energy resources, which seen the cost
of storage infrastructure, can only be achieved through demand-response. Accordingly, the availability of energy and potential
overload situations can be reflected using a price signal. The effectiveness of this mechanism arises from the flexibility of device
operation, which is nevertheless heavily reliant on the exchange of information between the grid and its consumers. In this paper,
we investigate the capability of an interactive energy management system to timely inform users on energy usage, in order to
promote an optimal use of local resources. In particular, we analyze data being collected in several households in Italy and
Austria to gain insights into usage behavior and drive the design of more effective systems. The outcome is the formulation
of energy efficiency policies for residential buildings, as well as the design of an energy management system, consisting of
hardware measurement units and a management software. The Mjolnir framework, which we release for open use, provides a
platform where various feedback concepts can be implemented and assessed. This includes widgets displaying disaggregated and
aggregated consumption information, as well as daily production and tailored advices. The formulated policies were implemented
as an advisor widget able to autonomously analyze usage and provide tailored energy feedback. The advisor is estimated leading
to a potential of 34% of savings using measurement data from the GREEND dataset.
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1. Introduction

The progressive installation of renewable energy
generators and the diffusion of electric vehicles con-
tribute to destabilizing the offer and demand of energy
in the grid. Demand-side management can compensate
this problem by exploiting a bidirectional information
channel between utilities and customers to balance the
demand to available supply. This includes both promo-
tion of efficiency and conservation [23], as well as di-
rect scheduling of loads to off-peak periods [26]. Thus,
efficiency can generally be achieved by (i) replacing
devices with more efficient ones, (ii) improving the ef-
ficiency of the building (e.g., using a better insulation),
and (iii) optimizing energy usage. A first possibility is

*Corresponding author. E-mail: andrea.monacchi @aau.at.

to analyze energy utilization to improve the overall ef-
ficiency. This is normally implemented through energy
audits, which can take place as surveys and interviews.
Nevertheless, the availability of high resolution smart
meter data can allow companies for remote data anal-
ysis. In [3], traces from more than 3000 households
are used to extract specific customers’ properties. Dy-
namic pricing schemes can offer an incentive to oper-
ate loads when the demand and cost of energy is lower.
To fully reflect energy availability, schemes should dy-
namically consider the offer of energy, so that users
can allocate the energy necessary for their activities
by bidding an amount in real-time. The main problem
with classic billing mechanisms is the delay between
the feedback and the actual energy usage, which makes
an understanding of energy use completely impossi-
ble. A first possibility to increase the information res-
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Fig. 1. Effectiveness of feedback [1,11].

olution is to rely on smart metering. Prepaid billing
is another possibility, and was shown leading to aver-
age savings of 11% in UK, regardless of disconnec-
tions from the grid [25]. Providing energy utilization
feedback makes users aware of the energy necessary to
operate devices. A possibility to provide unobtrusive
feedback is the use of ambient interfaces, such as the
power-aware cord [14].
Darby classifies feedback in two categories [8]:

— Indirect, when it provides consumption informa-
tion after it occurred.

— Direct, when the feedback concerns the amount
of energy in use.

Darby also shows that real-time consumption infor-
mation can effectively raise user awareness, leading
to a reduction in energy uses of up to 15%. On the
other hand, indirect information is necessary to en-
able learning mechanisms, and consequently, long-
term change. Similarly, [5] identify antecedent and
consequent strategies. Antecedent strategies aim at
preventing certain behaviors, for instance using goal-
setting and advices, while consequent strategies con-
cern direct and indirect feedback, which also includes
monetary and social rewarding. For instance, the study
n [17] was carried out over 6 months in Cyprus
and Singapore, respectively with 198 and 175 partic-
ipants. In particular, the authors did evaluate the ac-
ceptance of social feedback, i.e., comparison of indi-
viduals’ energy performance with friends and neigh-
bors. However, studies have also shown that in spite of
awareness, the effectiveness of these systems in mak-
ing people responsible depends on their sensitivity and
motivation [28]. The analysis in [11] relies on 36 stud-
ies carried out between 1995 and 2010 to show that
consumption information at device level can lead the

highest energy savings (see Fig. 1). Moreover, feed-
back mechanisms were shown more effective when ex-
ploiting a user model to offer personalized services,
such as advices, with estimated savings of around 20%
[1]. Another possibility is to recommend use of par-
ticularly greedy devices in cheaper tariff periods, such
as in the AgentSwitch [27]. The evaluation carried out
on 10 users for 3 months showed the system actually
finding cheaper tariffs for most of users [13]. In spite
of the large amount of work already done for assess-
ing different feedback mechanisms, an open solution
where concepts can be implemented and assessed is
still missing. Therefore, such an energy management
system should:

— Use a non-technical measure to quantify energy
utilization. Energy price offers a simple non-
technical measure unit for energy, although ex-
pressing use in terms of costs might not be effec-
tive because of the very little amounts [5].

— Appliance-level information along with overall
running costs. Fine-grained consumption infor-
mation was shown leading to higher savings, and
can be more effective to understand expenses and
promote replacement with more efficient ones [1].

— Direct feedback. In particular, real-time feedback
was shown more effective than pure historical
data [11].

— User-specific energy usage. The availability of a
wallet for each resident would help tracking indi-
vidual expenses and enable self-learning. For in-
stance, this might be used by parents in limiting
the time their kids spend on certain appliances
(e.g., video game consoles).

— Exploit user models. The availability of fine-
grained consumption information allows for
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building usage models, which can be used to com-
pare users and return tailored advices, such as de-
vice curtailment and replacement.

This paper analyzes energy usage data collected in
Austria and Italy to derive energy efficiency policies,
with the ultimate goal of designing an open energy
management system. The remainder of this paper is or-
ganized as follows: Section 2 overviews the results of
MONERGY, a project that explores the use of Home
Energy Management Systems (HEMS) to foster al-
teration of consumption patterns and achieve better
utilization of local resources. Previously, we identi-
fied common electrical devices and we have analyzed
the penetration of renewable energy [23], as well as
users’ attitude towards smart homes [19]. A measure-
ment campaign was then carried out and is described
in Section 2. Section 3 reports an extensive analysis
of consumption patterns for the monitored environ-
ments. The main outcome is the formulation of en-
ergy efficiency policies in Section 3.3. Based on our
findings, we propose in Section 4 a system that mon-
itors energy usage and provides users with tailored
feedback, based on open hardware and source com-
ponents. In particular, Section 5 introduces Mjdlnir,
a modular energy dashboard providing widgets to dis-
play disaggregated and aggregated consumption infor-
mation, as well as daily production and tailored ad-
vices. We expect the tool to be beneficial for both indi-
vidual users and researchers carrying out field tests on
persuasive technologies, whose contribution is partic-
ularly encouraged. The energy efficiency policies were
implemented as a specific widget, which is described
in Section 6. An estimation of their impact in terms of
savings is provided in Section 7. Section 9 concludes
the paper, summarizing the contribution and anticipat-
ing future developments.

2. Residential energy usage in Austria and Italy

In the MONERGY' project we have explored solu-
tions to improve utilization of energy in the Austrian
region of Carinthia and the Italian region of Friuli-
Venezia Giulia.

1 http://www.monergy-project.eu.

2.1. Energy usage scenarios

We initially carried out a survey study to highlight
differences in terms of consumption scenarios, which
affect the way inhabitants use energy and consequently
the overall energy profile. An outcome was the identi-
fication of electrical devices, as well as the penetration
of generation from renewable energy [23]. We found
out that the use of electrical devices for cooking and
heating purposes (i.e., electric boilers, heaters, hobs
and ovens) is more diffuse in Carinthia than Friuli,
where a more developed gas network can reduce elec-
tricity costs. Use of renewable energy is still limited,
with photovoltaic systems having the highest penetra-
tion (7.91% in FVG and 2.69% in Carinthia). Also,
residents of Friuli tend to use air conditioners (45.19%
compared to the 2.16% of Austrian respondents) and
can already exploit a time-of-use pricing scheme due
to the availability of automatic digital meters. House-
holders in Friuli declared to already exploit favourable
pricing conditions to operate their washing machine
(62.59%), lights (24.46%), iron (22.3%), electric oven
(21.58%), dryer (10.79%), conditioner (10.07%), and
dishwasher (9.35%).

The study also allowed for an estimation of en-
ergy usage in residential settings, as well as to gain
insights on the inhabitants’ attitude towards demand
response and energy management systems [19]. In-
habitants from Carinthia expressed the willingness to
exploit time-of-use pricing schemes, especially for
operating their washing machine (48%), electrical
boiler (23%) and dryer (20%). Consumption reduc-
tion in the last 4 years was pursued by replacing appli-
ances with more efficient ones, as done by 67.20% in
Carinthia.

2.2. Measurement campaign

The following step was to carry out a measurement
campaign in selected households to investigate actual
energy utilization. In particular, we have been moni-
toring the following scenarios:

1. A detached house with 2 floors in Spittal an der
Drau (AT). The residents are a retired couple,
spending most of time at home.

2. An apartment with 1 floor in Klagenfurt (AT).
The residents are a young couple, spending
most of daylight time at work during weekdays,
mostly being at home in evenings and weekend.
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3. A detached house with 2 floors in Spittal an der
Drau (AT). The residents are a mature couple
(1 housewife and 1 employed) and an employed
adult son (28 years).

4. A detached house with 2 floors in Klagenfurt
(AT). The residents are a mature couple (1 work-
ing part-time and 1 full time), living with two
young kids.

5. An apartment with 2 floors in Udine (IT). The
residents are a young couple, spending most of
daylight time at work during weekdays, although
being at home in evenings and weekend.

6. A detached house with 2 floors in Colloredo di
Prato (IT). The residents are a mature couple
(1 housewife and 1 employed) and an employed
adult son (30 years).

7. A terraced house with 3 floors in Udine (IT). The
residents are a mature couple (1 working part-
time and 1 full time), living with two young chil-
dren.

8. A detached house with 2 floors in Basiliano (IT).
The residents are a mature couple, with one be-
ing retired and therefore spending most of time
at home.

The main outcome was the GREEND dataset, contain-
ing power profiles of selected devices (see Table 1) at
1 Hz resolution for a time span of about 1 year [21].

3. Room for intervention
3.1. Identifying energy hogs

This section provides an analysis of energy con-
sumption in the monitored sites. In particular, Fig. 2
and Fig. 3 show the energy usage respectively in the
Austrian and Italian households. We exclude from this
discussion the 6th site shown in the previous section,
as in such deployment we collected circuit-level mea-
surements rather than individual devices. As visible,
the fridge is the most consuming device in all settings,
determining between the 40% and the 47% of mon-
itored consumption. Furthermore, consumption peaks
are observable in the summer period due to higher
environment temperature in the northern emisphere.
A considerable share is also accounted by the dryer,
the dishwasher and the washing machine. We also re-
mark the presence of multiple incandescent lightbulbs
in site S1, where for example, the bedside lamp alone
determines the 2% of monitored consumption. In site

Table 1
Monitored devices

House  Devices

0 Coffee machine, washing machine, radio, water kettle,
fridge w/ freezer, dishwasher, kitchen lamp, TV, vacuum
cleaner

1 Fridge, dishwasher, microwave, water kettle, washing ma-

chine, radio w/ amplifier, dryer, kitchenware (mixer and
fruit juicer), bedside light

2 TV, NAS, washing machine, drier, dishwasher, notebook,
kitchenware, coffee machine, bread machine

3 Entrance outlet, Dishwasher, water kettle, fridge w/o
freezer, washing machine, hairdryer, computer, coffee ma-
chine, TV

4 Total outlets, total lights, kitchen TV, living room TV,

fridge w/ freezer, electric oven, computer w/ scanner and
printer, washing machine, hood

5 Plasma TV, lamp, toaster, stove, iron, computer w/ scanner
and printer, LCD TV, washing machine, fridge w/ freezer

6 Total ground and first floor (including lights and outlets,
with whitegoods, air conditioner and TV), total garden and
shelter, total third floor.

7 TV w/ decoder, electric oven, dishwasher, hood, fridge
w/ freezer, kitchen TV, ADSL modem, freezer, laptop w/
scanner and printer

S2, a considerable contribution is given by the plasma
TV, as well as the stand-by consumption of multi-
ple consumer electronics devices (i.e., uninterruptible
power supply, network attached storage, game con-
sole, personal computers). Site S3 presents a similar
situation, with the desktop computer accounting for
the 22% of monitored consumption, which translates
into more than 12 kWh every month. As for the Ital-
ian deployments, the situation reflects the one previ-
ously presented. The fridge is the device responsible
for the largest consumption, accounting for between
24% and 46% of the total monitored consumption.
Televisions have also a considerable impact, being re-
sponsible for 20%, 25% and 39% of total consump-
tion in S4, S5 and S7, respectively. To understand the
operational costs of televisions, it is interesting to re-
mark that in site S4 and S5 the TVs consume more
than the washing machine, a device commonly consid-
ered as energy-hungry. Accordingly, in site S4 and S5
the washing machine is responsible for only 5% and
10% of the total monitored consumption in September.
In site S5, the consumption of the washing machine
and the electric iron is lower than that of televisions.
The analysis includes the consumption of both plasma
and LCD televisions, although the former type is gen-
erally demanding higher power. This is due to techni-
cal and cost reasons. Due to they higher contrast ratio
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Fig. 2. Power consumption of monitored Austrian sites.

and larger viewing angle, plasma televisions tend to be
installed in the day area of the household, such as the
living room, which implies longer usage of the device.
This suggests possible improvements, as discussed in
Section 7.3.

3.2. Utilization of time-dependent energy tariffs

Time-dependent energy tariffs are meant to foster
postponement of device operation to off-peak periods.
As previously analyzed in [23], in Italy more than 32
millions digital meters were installed by ENEL, the
main Italian distribution system operator (DSO). The
advanced metering functionalities provided by the dig-
ital meters allow for automatic meter reading and en-
ables more dynamic energy pricing. This differs from

the situation in Austria, especially in the Land of
Carinthia, where the roll out of digital meters at large
scale is yet to be started. Consequently, exploitability
of time-dependent energy tariff is not yet possible in
Austria.

Let us try to quantify energy costs and potential sav-
ings in Italy by considering the offer of ENEL for resi-
dential users (contracts below 3 kW), which is divided
in two slots, namely:

— T1, from Monday to Friday between 8 AM and
7 PM.

— T2, for the night hours and weekends, as well as
during public holidays.

To promote efficiency, in each time slot the price also
varies depending on four categories of consumption
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Fig. 3. Power consumption of monitored Italian sites.
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(see Table 2). Table 3 shows the energy cost of each
category and the entries contributing to such cost. Con-
cerning the monitored sites, they denote a rather rep-
resentative case, as they span from the lowest C1 to
the highest C4 energy consumption category (see Ta-
ble 4). Let us now investigate the distribution of device
usage over the time slots. Figures 4, 5 and 6 show en-
ergy consumption of each monitored device, indicated
in percentage terms so that the sum of power for each
time slots is 100%. As visible, users are aware of the
incentives provided by the time-slotted tariff, being the
monitored devices operated mostly during T2. Users in
site S5 better exploit than others the tariff T2, given the
larger consumption spread between T1 and T2, espe-
cially for the washing machine (#8) and the iron (#5).
Clearly, not all devices can be scheduled to a different
time slot, such as the toaster (#3). While users’ aware-

Table 2
Energy consumption categories
Category  Lower bound Upper bound
(kWh/year) (kWh/year)
Cl - 1800
C2 1801 2640
C3 2641 4440
C4 4441 -
Table 3

Cost of energy in Italy

Energy price  Delivery price  Grid services ~ TOT

(€/kWh)  fixed + variable ~ (€/kWh)  (€/kWh)
(€/kWh)

Cl 0.06731 0.01381 0.046392  0.127512

1 C2  0.06731 0.01711 0.101512  0.185932

C3  0.06731 0.02066 0.165762  0.253732

C4  0.06731 0.02446 0.208432  0.300202

Cl 0.06094 0.01381 0.046392  0.121142

™ C2  0.06094 0.01711 0.101512  0.179562

C3  0.06094 0.02066 0.165762  0.247362

C4  0.06094 0.02446 0208432 0.293832
Table 4

Per-year consumption and price category of
Italian sites

Category Energy consumption
(kWh/year)
Site 4 Cl1 1277
Site 5 Cc4 4778
Site 6 Cc3 3349
Site 7 Cc3 4099
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Fig. 6. Energy consumption per device and time slots of site S7.

ness of time-slotted tariffs is rather high in Italy [23],
the actual savings provided by operating in T2 is min-
imal. For instance, in S4 the washing machine is be-
ing used for 19 kWh in T1 and 12 kWh in T2, which
accounts for 3.9 €. Shifting completely the operation
to T2 would yield savings for about 12 cents, which is
not enough to foster a behavior change in this example
case.

3.3. Energy efficiency policies

From the analysis, multiple ways of improving en-
ergy efficiency emerged, including:

lighting: promoting replacement of incandescent
bulbs with energy saving ones;

device diagnostics: promoting replacement of old ap-
pliances with more energy efficient ones, espe-
cially regarding white goods but also involv-
ing consumer electronics (e.g., LCD/LED TV in
place of a plasma TV);

shedding of standby losses: promoting switching-off
of consumer-electronic devices when people are
not likely to be at home, such as ADSL modems
and TVs;

device shifting: promoting postponement of particu-
larly energy demanding devices to off-peak peri-
ods, in order to operate loads in cheaper time pe-
riods. This includes both deferral and preference
of efficient devices to energy demanding ones, as
it will be shown in Section 7.3.

While these policies have a general validity, the bene-
fits of the data analysis is limited to the users involved
in the campaign. In order to extend the analysis to a
large area, we propose in the next section an open so-
lution to provide automatic energy advice.

4. System design

The analysis demonstrated the need for more ef-
fective energy management strategies, which consider
both energy usage behavior and production from re-
newables. To this end, we propose a system consisting
of (see Fig. 7):

An aggregate power meter: For a Basic analysis the
meter should measure active power (W), while
apparent (VA) and reactive power (VAR) can be
useful for more advanced analyzes such as load
disaggregation. Such a meter needs to provide the
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Fig. 7. The system architecture.

required measurement with sufficient frequency
(for example 1 Hz), although unlike meters used
for billing purposes measurement accuracy is re-
laxed. On one hand, the YOMO open-hardware
meter previously designed and proposed in [20]
offers a low-cost metering solution for smart me-
ters and smart plugs. On the other hand, the WiTi-
Kee power meter? is a commercial solution that
provides high accuracy and overcomes the net-
work coverage limitations identified in [7], by
exploiting a combined powerline-wireless net-
work.

An appliance-level monitoring system: Appliance-
level data can be collected with devices such
as the OpenEnergyMonitor’ or the commer-
cial Plugwise.* Events are expressed as a tu-
ple (device, tyqay, duration, Ecopsumprion) and can
be either (i) detected using edge-detection tech-
niques (e.g., thresholding), (ii) extracted from ag-
gregate power readings using a non-intrusive load
monitoring tool [9,10,30] or (iii) specified manu-
ally by users after they occured [6].

An energy management system which gathers en-
ergy usage data for further processing and pro-
vides reports on a web-based dashboard and a
mobile application. A REST interface [12] is ex-
posed to easily integrate multiple data sources
and provide access to processed data to third-
party applications. Each method is authenti-
cated through a private token to ensure exclu-
sive access. To allow for real-time remote device
monitoring and control in presence of a network
address translator (NAT), a websocket is used be-
tween the dashboard and the server, as well as be-
tween the gateway and the server. This also avoids

2http://Www.witikee.com.
3http://openenergymonitor.org/emon/.
4https://Www.plugwise.com.

the needs for continuously polling devices for sta-
tus changes, as they can directly notify connected
dashboards upon occurrence.

To ease the deployment of Mjolnir, we provide a
ready-to-use gateway which relies on certified low-
cost hardware. Our configuration uses industrial Mod-
bus/RS485 meters for circuit-level measurements, as
well as a Plugwise ZigBee-network of smart outlets.
Our gateway consists mainly of a Raspberry Pi and a
Libelium RS485 hat,® both boxed in a Din-Rail case.
The gateway is a Linux daemon® collecting and pro-
cessing measurements from the meters, as well as lis-
tening for incoming device control events to be actu-
ated on the network of smart outlets.

5. Mjolnir: An open-source energy advisor

Following the requirements identified in Section 1,
we developed a web-based energy management sys-
tem capable of analyzing energy consumption and pro-
duction data, from both aggregate and disaggregated
sources. The framework, named Mjdlnir, is released
as open-source and available as SourceForge project.’
Mjolnir is implemented in PHP 5 and uses MySQL
as default DBMS. The front-end dashboard is imple-
mented in HTML 5, CSS 3 and Javascript (see Fig. 8).
At the version 0.3 Mjolnir provides:

System organization in buildings, rooms and de-
vices, to facilitate mining of activities and pro-
cesses.

Credit-based device management where each moni-
tored device is associated to a credit, which is de-

5 https://www.cooking-hacks.com/rs-485-modbus-shield-for-
raspberry-pi.

6http://s0urceforge‘net/projects/mjoelnir/ﬁles/Mjoelnir_Gateway.
zZip.

7http://mjoelnir.sourceforge.net.
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creased upon device usage [22]. This provides a
fine-grained consumption resolution, i.e., an un-
derstanding of the cost of operating each device.

Device metadata to annotate each device. To deter-
mine the applicability of certain analyses, each
device is described through the following at-
tributes: type (e.g., fridge), mobility and room,
curtailability, autonomy (i.e., user control) and
stand-by mode. In particular, the room and device
metadata are based on the large vocabulary in-
troduced in [18]. This makes the integration with
analysis frameworks sharing this data model (e.g.,
[2, nilm toolkit]) possible.

Tariff-based energy data analysis: The analysis tool
is based on a price model, which is expressed as
energy tariffs.

Modular interface: The interface exploits Twitter’s
Bootstrap® library in order to be seamlessly vi-
sualised on both mobile terminals (e.g., smart-
phones and tablets) and computers. Moreover, the
framework is organized on pages and cells and
based on the concept of widget, which provides
both modularity and flexibility to the interface
structure. A widget can provide various features,
such as displaying charts or forecasting energy
consumption, and can be placed in those cells.
This also allows users to progressively adapt the
feedback system in order to display energy infor-

8http://getbootstrap.com.

mation in a language that is meaningful to them:
by placing things next to each other and only con-
centrate on interesting matters.

Social features and public profile page: Social fea-
tures allow users for sharing their performance
with their peers, including social networks and
blogs. To this end, we distinguish public and pri-
vate pages of users. A public page represents the
user’s public profile. Also, actual and estimated
energy consumption and production for the cur-
rent day is provided as a summary that can be
embedded in external web pages (e.g., blogs).

Currently available widgets are:

timeserie: showing collected circuit-level power mea-
surements in comparison to the same hour inter-
val recorded over the previous days;

production and consumption report: showing daily
energy information over the last month;

calendar: comparing daily energy use to show anoma-
lous usage patterns;

cost report: showing daily aggregated energy cost
over the last month;

room-based cost report: showing energy consump-
tion and cost per individual rooms;

production and consumption gauges: showing en-
ergy use for the current day;

energy estimation: showing an estimation of energy
production and consumption for the current day,
as based on the previous days;
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device itemization: showing the consumption and
cost per device, over the current day, week and
year;

timeline: showing energy usage events over a time-
line, each described by their device, consumption
and cost;

tariff switch: showing the cost and use of devices
over the available energy tariffs, in order to foster
use in off-peak periods;

energy advisor: returning tips to increase efficiency
depending on usage behavior;

appliance usage: showing the usage probability of
user-driven devices, computed as frequency
counting over monitored days;

occupancy model: showing the building occupancy
probability based on all extracted appliance usage
models;

6. Providing tailored energy efficiency advice

The main focus of this study is the implementation
as automatic advices of the policies identified in Sec-
tion 3.3. In a first stage, candidate advices are formu-
lated. An advisor widget displays the list of advices
and allows the user for their acceptance or rejection
(see Fig. 9). We use the term conversion to indicate
that the user explicitly accepts the recommendation,
indicating the conversion of the advice into a behavior.
Once the conversion occurs the advice should not be
recommended again, in order to minimize user’s dis-
comfort. An information filtering mechanism is imple-
mented for the purpose.

Energy Advisor

Did you know that using TV from Mon to Fri (00:00 -
IE 12:00) instead of from Sat to Sun (12:00 - 23:59)

can let you save 0.11 per usage.

You already ran your washing_machine 15 times
this month. Halving your usage would save a 34.44

year

Fig. 9. The advisor widget.

6.1. Formulating candidate advices

Each candidate advice is formulated considering
users’ device usage events and targeted device type, as
follows:

Device diagnostics advices replacement of appliances
and it is thus useful to improve non-user-driven
devices (e.g., fridge)

1. Select non-user-driven devices.

2. Compute average consumption for each device
type for all users.”

3. Retrieve devices whose average consumption
is higher than the one for the device type of
a certain threshold 7 (e.g., 30%) and suggest
replacement.

Device shifting

1. Select user-driven devices.

2. Rank devices by their average consumption
(according to consumption events).

3. Rank tariffs by cost in order to select the best
and worst tariffs available.

4. Suggest to use the device in the cheapest tariff
and report the potential savings computed as
s = (Ixt) — (I xc), respectively with [ average
consumption for the device, ¢ and ¢ cheapest
and most expensive energy tariffs.

Shedding of standby losses suggests to switch-off
devices in standby mode (such as displays, de-
coders, DVD players, battery chargers without
load, air-conditioning systems) in periods of not
use (e.g., night). The advice can be returned to all
devices with a standby mode, based on the build-
ing occupancy model. However, higher effective-
ness can be achieved by also exploiting available
device usage models.

Device curtailment and moderate usage

1. Select user-driven devices.

2. Rank devices by their positive deviation from
the average number of usage for the device
type and cost.

3. Suggest to reduce the amount of times the de-
vice is being used and compute the yearly sav-
ings by multiplying the running cost spent for
the current month.

9Can be done periodically and cached in a separate location.
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6.2. Information filtering mechanism

Once candidate advices are formulated, an infor-
mation filtering mechanism is necessary. This allows
for presenting the most effective advices and limit
the information overload, based on historical feed-
back. We use the term conversion to indicate that the
user explicitly accepts the recommendation, indicating
the conversion of the advice into a behavior. A feed-
back to an advice can be formalized through the tu-
ple: (user, advice_type, device_type, action, time). In
this way, it is possible to omit advices which were pre-
viously converted into a behavior (i.e., goal) or involv-
ing device types and advice types with low acceptance
(i.e., negative feedback).

User feedback to recommendations can be explicit
or implicit, depending on the possibility to directly
express acceptance or interest on the proposed items
[15]. For explicit feedback this includes both rating
scales and pursuing the suggested advice on the sys-
tem by performing specific actions. On the other hand,
implicit feedback is built through inferences about the
user’s behavior, which makes the solution application
dependent. An example might be the frequent listen-
ing of an audio track to denote the user’s interest.
Clearly, implicit feedback can only indicate positive
feedback, as not listening to a track does not imply
disliking it. Consequently, explicit feedback offers a
more complete and accurate picture of user’s prefer-
ences. This issue becomes clearer in our scenario, in
which feedback is used to determine the degree of per-
sistence of advices. The results reported in [4] showed
that displaying multiple times the same recommenda-
tion does not improve the conversion rate unless the
user has a big opinion drift. Consequently, we use the
following 3-item Likert scale: “Ok thanks”, “I’'m al-
ready doing it”, “No thanks” (see Fig. 9). This means
that each advice can be formalized through the tu-
ple (user, advice_type, device_type, enabled, score).
A feedback of kind “T’m already doing it” indicates the
right conversion of the advice into a behavior, which
causes the deactivation of the advice. A usefulness
score is then computed for active advices using the
votes resulting from “Ok thanks” and “No thanks”.
Such value is used to rank the advices, while random-
ness is used to order advices with same usefulness
value. Positive feedback reinforces the advice by in-
creasing its score, whereas negative feedback can re-
sult from a reluctance in operating the device or a
mistrust in the specific advice type. Upon clicking on
“No thanks”, the user is asked to select one of the two

causes. Based on this information, we decrease the
score of all advices of the same type, that is, they either
involve the same advice type or device type.

7. Calculating the impact of intervention

In this section we assess the proposed policies by
providing an estimation of potential savings. In partic-
ular, based on the GREEND dataset we show that im-
plementing the proposed policies can yield up to 34%
savings.

7.1. Device diagnostics and replacement

Replacing appliances with newer ones is a possible
solution to increase efficiency. Old appliances are in-
efficient due to technological progress and degradation
from aging factors. An example is given by two old
fridges installed in site S5 (see Fig. 10). These devices
do not belong to the set of monitored appliances avail-
able in GREEND due to coverage limitations of the
selected monitoring platform. For such reason, a ded-
icated measurement was carried out for a week on the
site. The measurements revealed an energy consump-
tion of about 47.7 Wh and 28.6 Wh, for a total amount
of 56 kWh per month and 668 kWh per year. This num-
ber could be reduced to below 258 kWh per year by
replacing the two freezers with two freezers belonging
to A +—++ energy class.'” The resulting energy saving
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Fig. 10. Power consumption of an old fridge and an old freezer in
site S5 during a time interval of three hours.

10The computation of energy consumption given by A + ++
freezer has been made by assuming that the energy efficiency index
(EEI) is equal to 22, the volume of the freezer is equal to 302 liters,
and the appliance category is the 7.
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would be equal to 34 kWh per month that corresponds
to the 11% of the total energy consumption of site S5.

7.2. Shedding of standby losses

Standby mode is responsible for a relevant energy
waste, resulting from an idle status in which the de-
vice is neither being operated nor switched off. The
main reason is to ensure prompt reaction upon user
request. This includes consumer electronics such as
DVD players, radio, televisions, as well as air condi-
tioning systems, computers, unplugged phone charg-
ers, etc. Power consumption due to standby mode may
be as low as some mW, but it can exceed tens of W.11
The analysis on the GREEND reveals that, in site
S7 the television and the decoder are always on in
stand-by mode. Figure 11 shows the measured energy
consumption during subsequent days. The power con-
sumption is approximately 6.57 W, which yields an an-
nual consumption of 57.57 kWh, equivalently the 1.4%
of the total of site S7 (4099 kWh). Assuming 10 de-
vices in stand-by mode (e.g., the washing machine, the
air conditioning system, the televisions) about 14% of
the total consumption is wasted in standby.

Another device being switched on all the time is the
ADSL modem, although users tend to surf the Inter-
net only for a few hours a day. The power consump-
tion of an ADSL modem with WiFi and Ethernet func-
tionalities is about 30 W!? that means approximately

12
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Fig. 11. Measured energy absorbed by the TV 4 decoder of site S7.
The mean value is also shown.

UL awrence Berkeley National Laboratory, “Standby Power Sum-
mary Table”, online: http://standby.lbl.gov/summary-table.html.
12600.gl/IXWTiO.

263 kWh per year. If we assumed to switch on the
modem for about 3 hours per day and during the en-
tire weekend, the total power consumption would be
98 kWh per year, i.e., about 37% of the energy con-
sumed if the device was always switched on. Clearly,
this applies to all cases in which the connection is not
required for other applications/needs, such as VoIP.

7.3. Device shifting

Device shifting includes both temporal postpone-
ment and improvement of inefficient behavior, namely
by reducing the time inefficient devices are used. To
quantify the impact of device shifting we take as exam-
ple the case of plasma televisions. Figure 12 shows the
energy consumption profile of the plasma (42”) and the
LCD TV (37”) of respectively site S4 and S5 for one
day. As visible, the plasma TV consumes between two
and three times the energy of the LCD TV. Thus a pos-
sible way to save energy is to swap the plasma with the
LCD television, meaning that the plasma can be used
in those rooms whose occupancy is associated to off-
peak periods (e.g., bedroom). Based on Fig. 12 we can
estimate the hourly energy consumption of the plasma
and the LCD TV for an hour of activity to be respec-
tively 200 Wh/hour and 80 Wh/hour. Now the hours of
activities for such devices can be obtained as the ratio
between the consumed energy and the hourly energy
consumption. For instance, this translates for site S4 as
respectively 421 and 148 working hours for the plasma
TV and the LCD TV. In site S5, we estimate 771 and
404 working hours. Shifting the plasma to off-peak pe-
riods can be actuated simply by swapping position of
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Fig. 12. Energy consumption comparison of the plasma and the LCD
TVs of site S4 (on top) and site S5 (on bottom).
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the devices. This results into 34% and 23% lower en-
ergy consumption for site S4 and S5, respectively.

8. Acceptance of the advisor widget

As it was previously discussed, the estimated poli-
cies confirm that savings can be detected throughout
the automatic analysis of energy usage. However, a rel-
evant aspect to be addressed is how such opportunities
should be presented to users in a compelling way that
can foster behavioral change. To validate the usability
of the advisor widget we decided to carry out a vali-
dation test on actual users. In particular, we were in-
terested in assessing the effectiveness of the widget in
informing and persuading users, as well as their satis-
faction towards the means.

The target audience included householders of any
age capable of using basic functionalities of comput-
ers, invited without the promise of a credit for the
participation. We ran a total of 7 participants, all be-
tween 25 and 60 years. All participants had normal
or corrected-to-normal vision. In particular, 3 subjects
wore glasses during the study. None of them reported
eye disorders, such as color disfunctions. It is impor-
tant to remark that there is no optimal number of par-
ticipants for this kind of tests. Whilst Virzi suggested
5 users being enough to spot 80% of usability prob-
lems [29], 15 users is normally being considered as the
upper number for this purpose [24].

All subjects were initially informed of the widget
functioning prior to being positioned in front of a desk-
top computer displaying the interface. The subjects
were asked to use the “think aloud” protocol while
following specific instructions to interact with the in-
terface [16]. We used a synthetic setup with the fol-
lowing appliances: coffee machine, washing machine,
dishwasher, Playstation 4 and television. A satisfaction
questionnaire was finally given to rate the attractive-
ness of the design. Specifically, we used a 5-point Lik-
ert scale, with “strongly agree” as a left anchor and
“strongly disagree” as a right anchor.

8.1. Results

Figure 13 shows the results of the questionnaire,
with —2 associated to the negative anchor and +2
to the positive anchor. The entries correspond to the
following questions: “it takes short time to learn the

meaning of the buttons”, “the position of the buttons is
logical”, “I understand what happens when I click the

1

;
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Fig. 13. Results of the satisfaction questionnaire.
buttons”, “the advices are unusual, inventive, original”,
“the advices are useful to improve energy efficiency”,
“The advices are doable”, “I can learn something from
the advices”, “I would use this widget every day” and
“I would use this widget again”.

8.2. Discussion

All subjects immediately understood the functional-
ity of the widget and could quickly determine which
button to use depending on the meaningfulness of the
displayed advice. However, it is important to remark
that the advisor did exhibit a sort of cold start problem,
as in some other types of recommender systems. Ac-
cordingly, given the initial absence of votes the advices
are solely ranked on their estimated produced savings.
However, we noticed that most users tried to get rid of
all obvious advices by clicking on “I am already do-
ing it” to remove them from the widget. The majority
of the subjects commented the behavior as a curiosity
to see what other advices they could learn from. Users
commented the advisor as “useful” and in a couple of
cases as “obvious” and declared not to be willing to
use it every day. We remark that a mechanism is miss-
ing to keep users involved after the advices have been
displayed and the initial learning phase has been over-
come. A user commented as “obvious” and “useless”
the advice acting on stand-by consumption and ex-
pressed the necessity for automatic means to shed such
a consumption. The device diagnostics advice is con-
sidered as the most useful, as it gives an estimation of
possible savings that are not directly visible to house-
holders. Another aspect that emerged from the guided
interaction with the interface is also the lack of com-
mon sense in some advices. While advice applicability
determines which devices a certain advice can cover,
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there is necessity for further mechanisms beyond the
sole user’s preference to select the candidates. An ex-
ample is the advice “did you know that using the cof-
fee machine from Sat to Sun (00:00 to 23:59) instead
of from Mon to Fri (00:00 to 23:59) can let you save
0.03 € per usage?”. While postponing certain devices
to cheaper energy prices can yield savings, it should be
possible to further diversify devices for their sensitiv-
ity to being shifted over time. In fact, rejection of the
advice can prevent it from being applied to the same
device type in future. However, the advice can be fur-
ther improved by considering the actual usage model
for covered devices.

9. Conclusions and future work

In this paper, we investigated the possibility to in-
form users on energy usage, in order to promote an
optimal use of local resources. In particular, we anal-
ysed data collected in several households in Italy and
Austria to gain insights into usage behavior. The main
outcome was the formulation of policies to improve
energy efficiency in domestic settings and the design
of an energy management system, consisting of hard-
ware measurement units and a management software.
The Mjolnir framework, which we release for open
use, provides a platform where various feedback con-
cepts can be implemented and assessed. This includes
widgets displaying disaggregated and aggregated con-
sumption information, as well as daily production and
tailored advices. The formulated policies were imple-
mented as an advisor widget able to autonomously
analyze usage and provide tailored energy feedback.
While we provided an estimation of potential savings,
experiments with end users in real settings will be
necessary to ultimately validate the proposed policies.
Further development is also necessary. In particular,
various aspects deserve further consideration:

— The proposed policies were formulated through
the analysis of the GREEND dataset, which while
complete for the Austrian and Italian scenarios
lacks of generality. While we aimed at providing
a quantitative evaluation of potential savings, the
estimated 34% of savings results from adding the
contribution of each formulated advice. As such,
this constitutes the best case (i.e., given that users
follow the presented advices), which was com-
puted using the consumption scenarios recorded
in the GREEND dataset. Beside the regional pe-

culiarities, a weakness is also the limited number
of households recorded, which makes our find-
ings far from a statistical validity. In addition, the
analysis should be extended to include production
from renewables and electrical vehicles. New effi-
ciency policies should be introduced accordingly.

— As shown, Mjolnir provides an easy integration
between appliance-level metering platforms and
external loads disaggregation modules. We envi-
sion the future integration of a load disaggrega-
tion unit in the Mjolnir project. To this end, we
are currently adapting a design based on particle
filtering, as in [9]. The tool will ultimately send
appliance usage events for detected devices.

— The available appliance usage models should be
exploited to improve the effectiveness of advising
for device shifting.

— Beside providing detailed information of energy
usage, the benefits of demand response can be
exploited only when energy-involving processes
can be automated. While we provide a bidirec-
tional channel between controllable plugs and the
visualization dashboard, more sophisticated ap-
pliances are needed to allow for their remote
scheduling.

— To further develop the set of social features,
a comparison of users should be provided. In
particular, the distance from the best and worst
performing friend should be highlighted. Goal
setting and rewarding mechanisms can be used
to allow users for quantifying their performance
improvement.
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