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Abstract—Most state-of-the-art driver assistance systems can-
not guarantee that real-time images of object states are updated
within a given time interval, because the object state observations
are typically sampled by uncontrolled sensors and transmitted
via an indeterministic bus system such as CAN. To overcome this
shortcoming, a paradigm shift toward time-triggered advanced
driver assistance systems based on a deterministic bus system
such as FlexRay is under discussion.

In order to prove the feasibility of this paradigm shift, this
paper develops different models of a state-of-the-art and a time-
triggered advanced driver assistance system based on multi-
sensor object tracking and compares them with regard to their
mean performance. The results show that while the state-of-the-
art model is advantageous in scenarios with low process noise it
is outmatched by the time-triggered model in case of high process
noise, i.e., in complex situations with high dynamic.

I. INTRODUCTION

In 2009, 397448 people were injured and 4154 people were
killed in road accidents in Germany. Most of the fatalities
were caused by situations in which a driver did not react
properly or quickly enough to an unexpected event [10].
To make roads safer, many automotive original equipment
manufacturers and suppliers work on the development of
advanced driver assistance systems based on object tracking
[26]. Advanced driver assistance systems consist of one or
multiple sensor(s), an object tracking subsystem and one or
multiple feature service subsystem(s) interconnected via a bus
system.

As the number and potential of advanced driver assistance
system features grow, the question of how to guarantee the
correctness of their services becomes more and more impor-
tant [52], [53]. Although advanced driver assistance system
feature services “only” assist while the driver remains in full
control, an incorrect advanced driver assistance system feature
service can undoubtedly cause dangerous situations, as the
capability of human beings to adapt quickly to unexpected
events is restricted [18], [61].

The basis for achieving a correct advanced driver assistance
system feature service is an exact assessment of the surround-
ing environment. This requires the tracking of all relevant
objects within a feature service specific range and maintaining
real-time (RT) images of the object states whose deviations
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from reality do not exceed a feature specific upper bound
(feature specific accuracy demand) [59]. As real-time images
of evolving object states are invalidated by the progression
of time, they have to be updated within a well-defined time
interval (accuracy interval) with object state observations that
satisfy a well-defined accuracy level [32]. As a result, the
lowest possible accuracy level of object state observations,
the maximum object state evolution and the maximum system
latency that can occur in an advanced driver assistance system
have to be taken into account when determining which feature
specific accuracy demand can be satisfied [33]. Because the
accuracy level of an object state observation from a single-
sensor may be subject to fluctuations [48], [7], [27], single-
sensor advanced driver assistance systems are often limited to
low feature service specific accuracy demands. One approach
to deal with this problem comprises updating the real-time
images of the object states with redundant object state obser-
vations derived from heterogeneous sensors [14].

In contrast to single-sensor advanced driver assistance sys-
tems, where it is common to use point-to-point connections
between sensor and object tracking subsystem, the use of mul-
tiple heterogeneous sensors in multi-sensor advanced driver
assistance systems leads to the use of a bus system that inter-
connects the sensors and the object tracking subsystem [46].
In most state-of-the-art multi-sensor advanced driver assistance
systems, the object state observations are transmitted over a
controller area network, CAN, bus system [58], which is the
dominant bus system in the automobile industry. However, the
transmission of object state observations from a sensor to the
object tracking subsystem may be delayed by other data traffic
transmitted over the bus system, leading to unpredictable
transmission delays [37]. Because of this, it is impossible
to guarantee an update of object state observations within
a predefined time interval. To overcome this shortcoming, a
paradigm shift toward time-triggered multi-sensor advanced
driver assistance systems based on the principles of the time-
triggered architecture which was presented by Kopetz et
al. [34] seems feasible. According to said principles, a time-
triggered deterministic bus system establishes a global time-
base and synchronizes the clocks of all nodes, which allows
for deterministic sensor scheduling, measurement transmission
and processing and thus leads to guaranteed accuracy intervals,
bounded detection latency for timing and omission errors,
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replica determinism and temporal composability. However,
this paradigm shift is expected to affect the mean system
performance, as the gained temporal determinism may intro-
duce additional delays and demand supplementary hardware
resources [31], [46].

It is the objective of this paper to study how the mean system
performance is affected by the paradigm shift toward time-
triggered multi-sensor advanced driver assistance systems. Due
to the difficulty to accomplish reproducible conditions for
the high number of test drives that would be necessary to
produce statistically meaningful results for a set of scenarios
in field tests [21], this paper tackles the posed question through
simulation.

II. RELATED WORK

A. Sensor Scheduling
The scheduling of sensors has received considerable atten-

tion over the last years, especially in the fields of military [54]
and robotics [20]. This is due to the fact that in both fields
multiple sensors provide object state observations for one
or multiple feature services under a dynamically changing
environment.

If environmental conditions or the demand for object state
observations changes drastically over time, the activation of
the most appropriate sensor set can lead to improved re-
sults [57], [60] or the reduction of sensor usage costs [38].

In [44], Mehra uses different norms of the observability
and the Fisher information matrix [51] as criteria for the
optimization of measurement scheduling and shows that it
is preferable to cluster measurements around specific design
points tk.

Avitzour and Rogers [2] present a theory of optimal mea-
surement scheduling for least squares estimation which is
based on the assumption that the cost of a measurement is
inversely proportional to the variance of measurement noise.

In [45], Mourikis et al. compute the localization uncertainty
of a group of mobile robots wherein the localization uncer-
tainty is determined by the covariance matrix of the equivalent
continuous-time system at a steady state.

However, it lacks a study of how the mean system perfor-
mance is affected by a paradigm shift from an indeterministic
scheduling and transmission concept, where sensors run free
and sample measurements at highest rate, and a time-triggered
scheduling and transmission concept, where sensors have a
fixed sampling rate and measurement time stamps can be
controlled.

B. Out-of-Sequence-Measurements
An object tracking subsystem processes object state obser-

vations provided by sensors and provides real-time images
of the object states to the feature service subsystem. The
fusion of object state observations and related processes are
usually triggered by incoming measurements and the demand
for outgoing real-time images of the object states.

If the time stamp of an object state observation is not more
recent than the instant which the associated object state repre-
sented before a retrodiction, the corresponding measurement
is classified as out-of-sequence measurement (OOSM).

Figure 1 depicts a situation with an out-of-sequence mea-
surement problem which is independent from communication
system issues, i.e., the transmission times of object state ob-
servations from both sensors to an object tracking subsystem,
∆t

etb1/ttb1
PT and ∆t

etb2/ttb2
PT , are approximately equal. Due to

different observation preprocessing times, ∆tsens1PT > ∆tsens2PT ,
the measurement originating from sensor 2 is received ear-
lier at the object tracking subsystem than the measurement
originating from sensor 1, although the measurement from
sensor 2 represents a more recent snap-shot of the surrounding
environment.
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Figure 1. Out-of-sequence measurement problem

To deal with out-of-sequence-measurements, two ap-
proaches have been extensively explored in research through-
out the fusion community, i.e., the buffered (BUFF) approach
and the advanced algorithms (ADVA) approach.

1) BUFF approach: The BUFF approach is based on
storing measurements in a measurement buffer. In the buffer,
the measurements are sorted chronologically and the oldest
information is provided for fusion.

Kaempchen et al. [28] discuss the maximum latency (here
defined as the time difference between the instant of mea-
surement fusion and the measurement time stamp) that arises
when the BUFF approach is used to guarantee the fusion of
chronologically ordered measurements.

The time needed to process these object state observations
will usually depend on the complexity of the surrounding
environment, i.e., the number of object state observations and
the number of possible associations. In peak load scenarios, the
increasing computational load which is due to the increasing
number of tracked objects may reach a critical level. There-
upon, the time during which the incoming measurements have
to be kept in a buffer before they can be processed constantly
increases.

2) ADVA approach: In the ADVA approach received out-
of-sequence-measurements are directly fused using advanced
algorithms, which exploit the correlation between the actual
Kalman filter state and the object state observations arriving
too late.

There are several ADVA approaches that deal with one-
lag and multi-lag delays, filtering and tracking, linear and
non-linear systems as well as single-model and multi-model
systems (in the following, tκ refers to the out-of-sequence-
measurement time stamp and tk refers to the time stamp of
the measurement which updated the fusion before the out-of-
sequence-measurement was received).

Larsen et al. present a suboptimal multi-lag filtering algo-
rithm for linear systems [36]. If a measurement is expected to



arrive out-of-sequence, a correction term derived from object
state observations error covariance matrices and estimated
object state error covariance matrix is set up after the last
measurement representing the surrounding environment at a
time point before tκ is fused. Said correction term is then
updated whenever measurements are fused until the out-of-
sequence-measurement is available. As soon as the delayed
measurement is available, the correction term is used to update
the current object state estimate with the delayed measurement.

Bar-Shalom presents an optimal one-lag tracking algorithm
for linear systems [3]. The delayed measurement is incorpo-
rated by computing the update of an object state at time point
tk with the residual of the out-of-sequence-measurement and
the retrodicted state to the time point tκ as well as the covari-
ance matrices between the object states at tk and tκ. In [6], [5],
Bar-Shalom et al. extend the presented one-lag algorithm to
deal with multi-lag out-of-sequence-measurements by virtually
compressing the information of the measurements between tκ
and tk into one update. This approach is further extended to
a multi-model approach in [4].

Mallick et al. describe an extension to the algorithm pre-
sented in [3] toward a multi-lag, single-model and a one-lag,
multi-model approach [39]. In [41], Mallick et al. present a
multi-lag, single-model algorithm that includes data associa-
tion, likelihood computation and hypothesis management and
a particle filter for out-of-sequence-measurement treatment
in [40].

III. MODEL OF A STATE-OF-THE-ART MULTI-SENSOR
ADVANCED DRIVER ASSISTANCE SYSTEM

In the following, it is assumed that the advanced driver
assistance system consists of two sensors , an object tracking
subsystem, and a feature service subsystem, interconnected via
a bus system, as schematically depicted in Figure 2.

bus system

sensor 1 sensor 2 object tracking
subsystem

feature service
subsystem

Figure 2. Model of a multi-sensor advanced driver assistance system

A. Sensors

In an automotive environment, many obstacle detection
systems achieve good results with a combination of active
sensors such as radars and lasers and passive sensors such as
cameras [12]. Thus, sensor 1 is an abstraction of an automotive
vision sensor providing position observations, ~z1, and sensor
2 is an abstraction of an automotive radar or laser sensor
providing position and velocity (Doppler) observations, ~z2,
which are calculated with reference to a Cartesian coordinate
frame.

The object state observation vectors can be decomposed into
quantities of the true object state vector ~x mapped by matrix H
and a Gaussian distributed error vector ~r with zero mean [49]
as shown in 1 and 2.

~z1 = H1 · ~x + ~r1 =

(
x + rx,1
y + ry,1

)
(1)

~z2 = H2 · ~x + ~r2 =


x + rx,2
y + ry,2
vx + rvx,2
vy + rvy,2

 (2)

The object state observation error covariance matrices,
R1 = E

(
~r1 ~r1

′) and R2 = E
(
~r2 ~r2

′), are assumed to
consist of position independent variance values (an example
for annotating distance sensor values with variance values is
given in [15], particular values for accuracy of vision sensors
can be found in [47], [43], [42], for accuracy of radar or
laser sensors see [17], [19], [22], for conversion of range and
bearing measurements to Cartesian coordinate measurements
see [13]).

R1 =

(
1 ±0.001

±0.001 0.01

)
m2 (3)

R2 =


0.01 ±0.001 0 0
±0.001 1 0 0

0 0 0.01 1
s2 ±0.001 1

s2

0 0 ±0.001 1
s2 1 1

s2

m2

(4)
The object state observation error covariance matrices are

assumed to be slightly higher than specified in the cited papers.
This is due to the fact that the specified precision of both
sensors refers to measuring coordinates of points or edges of
a non-planar contour of a vehicle.

However, in scenarios where the measured coordinates of
points or edges are used for estimating a vehicle’s geometrical
center, observations of the vehicle’s dimensions such as width
and length are additionally required [55]. When estimating
the vehicle’s geometrical center using width and length ob-
servations, the potential inaccuracy of the width and length
observations has to be taken into account.

Furthermore, the reflection of a laser scanner or radar beam
on a vehicle contour or the edges that a vision sensor detects
when analyzing a vehicle contour may shift during a maneuver
due to changing aspect angles. This shifting adds further
uncertainty to the estimation of the vehicle’s geometrical
center and has to be taken into account in the tracking process,
for example, by increasing the object state observation error
covariance matrices.

The preprocessing times of the sensors are assumed to be
dependent on the complexity of the surrounding environment.
It is assumed, however, that there are upper bounds for the
sensor preprocessing times as each sensor does not detect
more than a maximum number of objects. Accordingly, the
preprocessing time of sensor 1 is assumed to vary within a
range of c · 160 ms to 160 ms and the preprocessing time of
sensor 2 is assumed to vary within a range of c·80 ms to 80 ms
due to changes in the complexity of the environment [56],
where c accounts for different complexity variances.

Furthermore, it is assumed that the sensors do not contin-
uously provide object state observations, but tend to lose an



object from time to time, which can result, for example, from
object occlusions, difficulties in the observation preprocessing
or a badly working association process. The recognition ability
is modeled for both sensors independently by a Markov
process with binary states j = 0 and j = 1

~j =

(
0
1

)
(5)

where 0 indicates that a sensor has not observed an object
and 1 indicates that a sensor has observed an object, the
Markov process being governed by the following transition
probability matrix.

J =

(
0.975 0.025
0.01 0.99

)
(6)

B. Bus System

The bus system within the state-of-the-art model is as-
sumed to be a CAN which operates event-triggered using
a carrier sense multiple access/collision resolution scheme.
Furthermore, it is assumed that the CAN is exclusively used
for transmitting object state observations. The time for trans-
mitting the object state observation vectors from a sensor to
the object tracking subsystem is assumed as ∆tetbPT = 2 ms.

C. Object Tracking Subsystem

It is further assumed that associated in-sequence object state
observations and predicted images of the object states are
fused by a Kalman filter algorithm using a white-noise jerk
model [50] with

~x =


x
y
vx
vy
ax
ay

 , (7)

eF∆t =


1 0 ∆t 0 ∆t2

2 0

0 1 0 ∆t 0 ∆t2

2
0 0 1 0 ∆t 0
0 0 0 1 0 ∆t
0 0 0 0 1 0
0 0 0 0 0 1

 (8)

and

Q =



∆t5

20 0 ∆t4

8 0 ∆t3

6 0

0 ∆t5

20 0 ∆t4

8 0 ∆t3

6
∆t4

8 0 ∆t3

3 0 ∆t2

2 0

0 ∆t4

8 0 ∆t3

3 0 ∆t2

2
∆t3

6 0 ∆t2

2 0 ∆t 0

0 ∆t3

6 0 ∆t2

2 0 ∆t


· q. (9)

The time required for fusing all object state observations
from one sensor is assumed to be dependent on the complexity
of the environment as every additional object increases the
required fusion time.

As the maximum number of object state observations is
assumed to be restricted, there exists an upper bound for the
time required to fuse in-sequence-measurements, ∆tfusISMPT ≤
UBfus. In order to be applicable for typical sensor configura-
tion, the upper bound is assumed to range between 2 ms and
25 ms, UBfus = {2, 5, 10, 15, 20, 25}ms. Furthermore, it is
assumed that ∆tfusISMPT varies within a range of dc · UBfuse
to UBfus depending on the complexity of the surrounding en-
vironment where c accounts for different complexity variances
as modeled in subsection V-A.

The occurrence of out-of-sequence-measurements is either
dealt with by the BUFF approach (buffering and chrono-
logically sorting measurements) or the ADVA approach as
presented by Bar-Shalom in [5]. The ADVA approach is
assumed to demand additional processing time following
∆tfusOOSMPT = d 3

2∆tfusISMPT e.
Furthermore, the object tracking subsystem does not main-

tain a buffer object state observations. Newer observations
replace older observations from the same sensor. At predefined
points in time, the object tracking subsystem starts to predict
images of the object states in order to generate real-time
images of the object states which are provided to the feature
service subsystem. The time required for predicting real-
time images of the object states is assumed to be ∆tprePT =

d 1
3∆tfusISMPT e.
The real-time images of the object states are then transmit-

ted to the feature service subsystem. It is assumed that the
control loop performed within the feature service subsystem
has a frequency of 25 Hz which is a typical value for vehicle
control [35], [24], [25].

D. State-of-the-art Model Schedule

Figures 3(a) and 3(b) visualize the schedule of the state-of-
the-art model for the BUFF or ADVA approach, each process
being visualized by a horizontal bar.

Within the state-of-the-art model as depicted in Figures 3(a)
and 3(b), the two sensors (“sensor 1” and “sensor 2”) measure
with cycle times, ∆tsens1CT and ∆tsens2CT , that vary over real-
time and are equal to the corresponding sensor preprocessing
times, ∆tsens1PT and ∆tsens2PT . The sensor preprocessing times
are not constant due to the complexity variance as described
in subsection V-A. The phases of the sensors are uncontrolled
as the internal sensor clocks are not synchronized.

The transmission of an object state observation is indicated
in Figure 3(a) and Figure 3(b) by bars labeled “activity of bus
system”.

As soon as object state observations are received by the
object tracking subsystem and no task is processed simultane-
ously, the object position observations can be fused with asso-
ciated images of the object states (“fusion task”) hereby taking
into account the particulars of out-of-sequence-measurements.

In Figure 3(a), the received object state observations are
sorted chronologically within an object state observation buffer
which allows the fusion of all object state observations without
the use of advanced algorithms. However, as can be seen from
Figure 3(a), the buffering of object state observations adds
additional delays to the system.
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Figure 3. State-of-the-art model schedule

In Figure 3(b) the received object state observations are
fused as soon as sufficient processing resources are avail-
able. The fusion process task interval, ∆tfusISMPT , varies as
described above.

Every ∆tpreCT , real-time images of the object states are
generated (“prediction cycles”) and transmitted over the bus
system to the feature service subsystem.

IV. PARADIGM SHIFT TO TIME-TRIGGERED MODEL

A. Sensors

The sensors in a time-triggered multi-sensor advanced driver
assistance system are assumed to have fixed sensor cycle times
that are equal to the maximum sensor preprocessing times,
∆tsens1PT = 160 ms and ∆tsens2PT = 80 ms, i.e., the sensors
are scheduled to account for the worst case execution time
of observation preprocessing [30]. The sensor phase, ∆tsens2PH ,
can be controlled and chosen by a system designer in order
to arrive at an optimal schedule.

B. Bus System

The bus system within the time-triggered model is assumed
to be time-triggered using a TDMA scheme, which results
in well-defined transmission slots and bounded transmission
jitter. ∆tttbCT is chosen to be a factor of ∆tsens1CT and ∆tsens2CT

and has the typical value of 10 ms [16], [23].
The time for transmitting object state observation vectors

from a sensor to the object tracking subsystem is assumed to
be ∆tttbPT = 2 ms [16].

Please note that the transmission delays introduced by the
event-triggered bus system as described in subsection III-B and
the time-triggered bus system are assumed to be equal. This

assumption seems feasible as the focus of this paper is not on
any particular event-triggered or time-triggered bus system but
on the paradigm shift toward time-triggered advanced driver
assistance systems.

C. Object Tracking Subsystem

The object tracking subsystem fuses the incoming ob-
ject state observations with associated images of the object
states, taking into account the particulars of out-of-sequence-
measurement processings.

The time-triggered model schedule is set up according to
the upper bound for the fusion process task interval UBfus
which is assumed to vary between 2 ms and 25 ms, depending
on the hardware resources of the object tracking subsystem.

The occurrence of out-of-sequence-measurements is either
dealt with by a BUFF approach or an ADVA approach as
presented by Bar-Shalom in [5].

At predefined points in time, the object tracking subsystem
starts to predict images of the object states in order to generate
real-time images of the object states. The scheduling of the
prediction can be chosen by a system designer in order to
arrive at an optimal schedule.

The real-time images of the object states are then transmit-
ted to the feature service subsystem.

D. Time-Triggered Model Schedule

Figures 4(a) and 4(b) depict an unsynchronized time-
triggered model schedule for the BUFF approach or the ADVA
approach and Figure 5 depicts a synchronized time-triggered
model schedule.

Within the time-triggered model schedules as depicted in
Figures 4(a), 4(b) and 5, the two sensors have constant cycle
times, ∆tsens1CT = 160 ms and ∆tsens2CT = 80 ms (observation
preprocessing being referred to by the label “sensor 1” respec-
tively “sensor 2”). The phase between sensor 1 and sensor 2
is chosen to be ∆tsens2PH = ∆tpreCT = 40 ms in Figure 4 and
∆tsens2PH = 0 ms in Figure 5.

The transmission slots of sensor 1 and sensor 2 in Fig-
ures 4(a), 4(b) and 5 are scheduled in such a way that the
object state observations of sensor 1 are transmitted without
any further delay, ∆tttb1PH = 0, and that the object state
observations of sensor 2 are transmitted after a delay of 2 ms,
∆tttb2PH = 2 ms.

Please note that in the time-triggered synchronized config-
uration as depicted in Figure 5, the received object state ob-
servations are fused as soon as sufficient processing resources
are available, as out-of-sequence-measurements are avoided by
design.

Every ∆tpreCT , real-time images of the object states are
predicted from the fused images of the object states and then
transmitted via the bus system to the feature service subsystem
(“prediction cycles”). For the time-triggered unsynchronized
ADVA configuration, the prediction cycle phase is

∆tprePH = ∆tfusOOSMPT + 2 ·∆tttbPT . (10)

For the time-triggered unsynchronized BUFF configuration
the prediction cycle phase is chosen to be
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Figure 4. Unsynchronized time-triggered model schedule
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Figure 5. Synchronized time-triggered model schedule

∆tprePH = 2 ·∆tfusISMPT + ∆tttbPT (11)

for 2 ·∆tfusISMPT + ∆tprePT < ∆tpreCT and

∆tprePH = ∆tfusISMPT + ∆tttbPT (12)

for 2 ·∆tfusISMPT + ∆tprePT > ∆tpreCT .
For the time-triggered synchronized configuration the pre-

diction cycle phase is chosen to be

∆tprePH = 2 ·∆tfusISMPT + ∆tttbPT (13)

for 2 ·∆tfusISMPT + ∆tprePT < ∆tpreCT and

∆tprePH = ∆tfusISMPT + 2 ·∆tttbPT (14)

for 2 ·∆tfusISMPT + ∆tprePT > ∆tpreCT .
Due to the deterministic nature of the time-triggered ap-

proach and the fact that the jitter of all processes is assumed
to be sufficiently small compared to the cycle times and can
therefore be neglected, the whole system schedule is defined
by the constant cycle times and the phases of all processes.

V. ENVIRONMENT MODEL

The environment is modeled with regard to two aspects, the
variance of its complexity, i.e., how the preprocessing times of
the sensors and the object tracking subsystem depend on the
environment, and the process noise which is a measure of how
good the employed Kalman filter prediction model describes
reality.

A. Modeling Environment Complexity

The changes in the complexity of the environment are
modeled by a random walk with step size 1 ms. The Markov
processes regarding the varying object observation preprocess-
ing times and the varying object observation fusion time are
modeled by Markov chains comprising states from c · 160 ms
to 160 ms, c · 80 ms to 80 ms, and c · {2, 5, 10, 15, 20, 25}ms
to {2, 5, 10, 15, 20, 25}ms. For c = 0.8 the chain is



∆tsens1PT /ms ∆tsens2PT /ms ∆tfusPT /ms

128 64 {2, 4, 8, 12, 16, 20}
136 68 {2, 5, 8, 13, 17, 22}
144 72 {2, 5, 9, 14, 18, 23}
152 76 {2, 5, 9, 14, 19, 24}
160 80 {2, 5, 10, 15, 20, 25}


(15)

with the corresponding state transition probability matrix.1
0.5 0.5 0 0 0
0.25 0.5 0.25 0 0

0 0.25 0.5 0.25 0
0 0 0.25 0.5 0.25
0 0 0 0.5 0.5

 (16)

B. Process Noise

The process noise of the object state evolution is assumed
to be white with power spectral density q, and to account
for modeling errors, e. g., higher order derivatives that are
not contained in the object state vector. In an automotive
environment, the choice of a single specific q is problematic
since, for example, q in an traffic jam environment will be
much smaller than q in a freeway environment.

As a result, q is assumed to vary in the range of q =
[0.01, 100]m

2

s5 to compensate for not modeling the derivative
of acceleration in the white noise jerk model of subsection
III-C (see also [1], [9], [29], [11]).

1States and transition probability matrices for c = {0.5, 0.6, 0.7, 0.9} are
defined analogously.



VI. PERFORMANCE MEASURE

As mentioned in the introduction, the basis for achieving
a correct advanced driver assistance system feature service
is a correct assessment of the surrounding environment. The
correctness of this assessment depends on the deviations
between the real-time images of the object states and reality,
which have to be smaller than a feature specific upper bound.

Assuming that all relevant objects are detected by the
sensors and that the number of false positives (“ghost” objects)
and false negatives (non-detects) is negligible (otherwise the
sensors would not be suited for use in advanced driver assis-
tance systems), the mean performance of both models can be
expressed by the mean error covariance matrix trace of the
real-time images of the object states (for error covariance ma-
trix trace see also [8]). Since the state-time (ST) of the images
of the object states is delayed due to object state observation
preprocessing, transmission and fusion, it is assumed that the
real-time images of the object states are predicted from the
state-time images of the object states using the object state
evolution model of the Kalman filter, which leads to

MP := meann∈N

(
trace

(
P
(
tRT | tST

)))
(17)

with tRT = ∆tprePH + n ·∆tpreCT and tST = tST (tRT ).

VII. SIMULATION RESULTS

We have compared the state-of-the-art and time-triggered
configurations for different regions of the parameter space
(spanned by the environment parameters and the upper bound
for fusion processing time).

A. Best Configurations

Figure 6 depicts a three-dimensional parameter space grid
spanned by the parameters for complexity variance, c, upper
bound for the fusion processing time, UBfus, and process
noise power spectral density, q. Therein, every grid point
is identified by a symbol indicating the configuration which
is best for the respective parameter set with regard to the
simulated mean performance. The symbols are referenced by
numbers 1 to 5 in the figure legend, the numbers referring to
the model configurations:
• State-of-the-art BUFF (1);
• State-of-the-art ADVA (2);
• Time-triggered unsynchronized BUFF (3);
• Time-triggered unsynchronized ADVA (4); and
• Time-triggered synchronized (5).
Figure 6 shows that the state-of-the-art ADVA configuration

(indicated by blue squares) is best for most grid points in the
three-dimensional parameter space grid spanned by complexity
variance, upper bound for the fusion processing time, and
process noise power spectral density.

However, there are boundary grid points where the state-of-
the-art ADVA configuration is outperformed by other config-
urations.

For big to medium complexity variance in combination
with slow object tracking subsystem and small process noise
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Figure 6. Best state-of-the-art or time-triggered configurations for different
points in parameter space

power spectral density, the state-of-the-art BUFF configuration
(indicated by black circles) yields the best results among all
possible configurations.

For small complexity variance in combination with medium-
slow to medium-fast object tracking subsystem and medium to
high process noise, the time-triggered unsynchronized ADVA
configuration (indicated by red triangles) is best.

The time-triggered synchronized configuration (indicated
by yellow stars) is best for small complexity variance in
combination with a fast or slow object tracking subsystem,
and small to high process noise power spectral density.

It is also noteworthy that the time-triggered unsynchronized
BUFF configuration is suboptimal over the whole parameter
region.

B. Best State-of-the-art and Time-Triggered Configurations

Figures 7, 8, 9, 10, and 11 indicate the best-suited config-
uration for different parameter ranges and configurations.

In the top two-dimensional parameter grids, every grid point
is identified by a symbol indicating the respective best-suited
configuration with respect to the mean performance.

The three-dimensional figures depict the ratio of the best
state-of-the-art configurations mean performance to the best
time-triggered configurations mean performance.

Every set of three subfigures represents one of q = 0.01m
2

s5 ,
q = 0.1m

2

s5 , q = 1m
2

s5 , q = 10m
2

s5 and q = 100m
2

s5 .
Figures 7(a), 8(a), 9(a), 10(a), and 11(a) show that the state-

of-the-art BUFF configuration outmatches the state-of-the-
art ADVA configuration for slow object tracking subsystems,
UBfus = 25 ms, in combination with small to medium process
noise power spectral density, q = {0.01, 0.1, 1} m

2

s5 . However,
for the remaining parameter grid points, the state-of-the-art
ADVA configuration yields better results than the state-of-the-
art BUFF configuration.

Regarding the time-triggered configurations, Figures 7(b),
8(b), 9(b), 10(b), and 11(b) show that for medium upper bound
for the fusion processing time, UBfus = {5, 10, 15}ms in
combination with small process noise power spectral den-
sity, q = {0.01, 0.1} m

2

s5 , the time-triggered unsynchronized
ADVA configuration outmatches the time-triggered synchro-
nized configuration and the time-triggered unsynchronized
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(b) Best time-triggered configurations (argmin (MP3,4,5))
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Figure 7. Comparison of best state-of-the-art configurations and best time-
triggered configurations for q = 0.01m2
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BUFF configuration. For the other upper bounds for the fusion
processing time, UBfus = {2, 20, 25}ms, however, the time-
triggered synchronized configuration outmatches the time-
triggered unsynchronized ADVA configuration and the time-
triggered unsynchronized BUFF configuration.

With increasing process noise power spectral density, q =
{1, 10} m

2

s5 , the time-triggered unsynchronized ADVA config-
uration outmatches the time-triggered synchronized configura-
tion also for the upper bound of the fusion processing time of
UBfus = {20}ms, i.e., the best time-triggered configuration
for UBfus = 20 ms shifts from the time-triggered syn-
chronized configuration to the time-triggered unsynchronized
ADVA configuration.

For high process noise power spectral density, q = 100m
2

s5 ,
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the time-triggered unsynchronized ADVA configuration out-
matches the time-triggered synchronized configuration for
medium to high upper bounds for the fusion processing
time, UBfus = {10, 15, 20, 25}ms, and the time-triggered
synchronized configuration outmatches the time-triggered un-
synchronized ADVA configuration for a fast object tracking
subsystem, UBfus = {2, 5}ms. This shows that if the process
noise power spectral density increases from q = 10m

2

s5 to
q = 100m

2

s5 , the best time-triggered configuration shifts from
the time-triggered unsynchronized ADVA configuration to the
time-triggered synchronized configuration for an upper bound
of the fusion processing time of UBfus = 5 ms. For an upper
bound of the fusion processing time of UBfus = 25 ms, how-
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ever, the best time-triggered configuration shifts vice versa.
Regarding the mean performance of the best state-of-the-

art configurations and the best time-triggered configurations,
Figures 7(c), 8(c), 9(c), 10(c), and 11(c) show the mean
performance ratios of the best state-of-the-art configurations
to the best time-triggered configurations which have been
identified in Figures 7(a), 8(a), 9(a), 10(a), 11(a), 7(b), 8(b),
9(b), 10(b), and 11(b). The figures show that the difference
between the best state-of-the-art configurations and the best
time-triggered configurations range from −15% to +6% of the
mean real-time error covariance matrix trace of the respective
best time-triggered configuration.

For low process noise power spectral density, q = 0.01m
2

s5 ,
the difference ranges from −15% to +1% and for high process
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(b) Best time-triggered configurations (argmin (MP3,4,5))
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Figure 10. Comparison of best state-of-the-art configurations and best time-
triggered configurations for q = 10m2
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noise power spectral density, q = 100m
2

s5 , the difference ranges
from −10% to +2%. It should be noted however, that the
biggest difference of +6% is found for medium process noise
power spectral density, q = 1m

2

s5 .

VIII. ANALYSIS OF SIMULATION RESULTS

As the time-triggered configurations schedule all processes
in accordance with their worst case execution time, the mean
performance measures of the time-triggered model configu-
rations are unaffected by a decrease of the lower bounds for
sensor and fusion preprocessing times, indicated by a decrease
of the complexity variance parameter. As a state-of-the-art
configuration may start a new task as soon as the preced-
ing task has been finished, the state-of-the-art configuration
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Figure 11. Comparison of best state-of-the-art configurations and best time-
triggered configurations for q = 100m2
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profit from shorter sensor and fusion preprocessing times.
This leads to the observed behavior where the state-of-the-
art configurations outmatch the time-triggered configurations
for a decreasing complexity variance parameter, as shown in
Figures 7(c), 8(c), 9(c), 10(c), and 11(c).

The time-triggered synchronized configuration is able to
fuse all object state observations but is more valuable in
the sequence of intervals between state-time and real-time
compared to the state-of-the-art ADVA configuration. Accord-
ingly, an increase in the process noise power spectral density
which increases the sequence of integrated process noise traces
to a greater extent than the sequence of object state state-
time image error covariance matrix traces is unfavorable for
the time-triggered synchronized configuration, as the time-

triggered synchronized configuration has the greater values
in the sequence of intervals between state-time and real-
time and therefore, the sequence of greater integrated process
noise traces. The reason why the state-of-the-art ADVA con-
figuration is outmatched by the time-triggered synchronized
configuration for medium process noise power spectral density
lies in the fact that the state-of-the-art ADVA configuration
cannot fuse all object state observations of sensor 1. When the
process noise power spectral density decreases, the influence
of the integrated process noise traces is diminished and the
focus shifts toward the sequence of object state state-time
image error covariance matrix traces. Here, the state-of-the-art
BUFF configuration outmatches the time-triggered synchro-
nized configuration due to the higher number of object state
observation sets that are fused. The reason why this behavior
is also observed for small lower bounds for sensor and fusion
preprocessing times is obvious when considering that the long
times required to fuse an object state observation set and the
high number of uncoordinated object state observation sets
may lead to fusion “jams”.

The time-triggered unsynchronized ADVA configuration has
a sequence of object state state-time image error covariance
matrix traces that is unaffected by a variation in the upper
bound for the fusion processing time but reacts with a 1.5
times greater variation in the sequence of intervals between
state-time and real-time. The time-triggered synchronized
configuration experiences a jump in the sequence of object
state state-time image error covariance matrix traces for the
upper bound for the fusion processing time changing from
UBfus = 15 ms to UBfus = 20 ms. Furthermore, the sequence
of intervals from state-time to real-time varies proportionally
for UBfus ≥ 20 ms and twice as great for UBfus ≤ 15 ms.
Accordingly, the sequence of intervals between state-time and
real-time increases stronger in the time-triggered synchronized
configuration for the upper bound for the fusion processing
time UBfus ≤ 15 ms and weaker for UBfus ≥ 20 ms than
the time-triggered unsynchronized configuration, which leads
to the observed behavior.

The observed interrelation derives from the influence of
the sequence of integrated process noise traces that increase
with increasing process noise power spectral density. In this
regard, the jump in sequence of object state state-time image
error covariance matrix traces which react unfavorably to
the upper bound for the fusion processing time changing
from UBfus = 15 ms to UBfus = 20 ms becomes greater
and makes it impossible for the time-triggered synchronized
configuration to be competitive.

IX. CONCLUSION

In this paper a state-of-the-art model and a time-triggered
model for multi-sensor advanced driver assistance systems
have been compared. In the state-of-the-art model, the sensor
phases are not controllable and the sensor cycle times are
equal to the sensor preprocessing times which vary within
a given range according to a Markov chain with given
transition probability matrix. The state-of-the-art model can
be operated in two configurations, a state-of-the-art BUFF



configuration, where object state observations are buffered
and chronologically sorted before fusion and a state-of-the-
art ADVA configuration that directly fuses out-of-sequence-
measurement using an ADVA approach.

In the time-triggered model, the sensor phases are con-
trollable, the sensor cycle times are fixed and equal to the
sensors’ worst case preprocessing times. Furthermore, a time-
triggered bus system with fixed transmission slots is used that
transmits the object position observations from the sensors
to the object tracking subsystem. The time-triggered model
can be operated in various configurations from which three
phase-aligned configurations are selected for further analysis:
a time-triggered unsynchronized BUFF configuration, a time-
triggered unsynchronized ADVA configuration, and a time-
triggered synchronized configuration, where the object state
observation sampling of both sensors is either unsynchronized
or synchronized.

The mean performance of both models has been evaluated
by simulations with multiple configurations differing in the
sensor and bus system schedules and the treatment of OOSMs.
The results show that for the chosen parameter space, the
state-of-the-art ADVA configuration yields the best results.
However, the results also show that there are points in pa-
rameter space where the state-of-the-art ADVA configuration
is outmatched by the state-of-the-art BUFF configuration,
the time-triggered unsynchronized ADVA configuration or the
time-triggered synchronized configuration.

Accordingly, the state-of-the-art configurations are favorable
when the sensor preprocessing times show very high vari-
ations. However, with decreasing sensor preprocessing time
variation, the time-triggered configurations outmatch the state-
of-the-art configurations for two reasons. The first reason is the
increasing mean of the sequence between state-time to real-
time. The second reason is that the time-triggered configura-
tions show a smaller variation in the sequence between state-
time and real-time which is advantageous when considering
the higher order dependence of the mean trace of the integrated
process noise. As a result, the state-of-the-art configurations
show weaknesses in situations of high risk potential, because
such situations are characterized by a high number of objects
which leads to low sensor preprocessing time variation and/or
a fast changing environment which is represented by a high
process noise power spectral density.

Given the aforesaid, it can be concluded that time-triggered
control paradigm is well-suited for advanced driver assistance
systems equipped with sensors of the current generation, as
positive features like guaranteed accuracy intervals, bounded
detection latency for timing and omission errors, replica deter-
minism and temporal composability are achieved by a minimal
degradation of the mean system performance.
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