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Abstract— Multi-sensor object tracking is an important feature
for advanced driver assistance systems in future automobiles.
Most state-of-the-art systems cannot guarantee deterministic
processing of the sensor values due to unsynchronized sensing
and processing units. To overcome this shortcoming we propose
a paradigm shift towards a time-triggered system architecture
providing a deterministic bus system, synchronized nodes, and
a global time-base. The paradigm shift is supported by results
of a simulation of different synchronization and scheduling
approaches which suggest that although non-time-triggered ap-
proaches perform well in scenarios with low process noise,
the time-triggered model becomes advantageous in potentially
dangerous scenarios with high dynamics. In order to validate
the results of the simulation for real life scenarios, we analyzed
test drives derived from a testbed featuring a Volkswagen Touran
being equipped with a laser scanner, a stereo camera system, a
FlexRay communication system, an object tracking subsystem
and a differential GPS system as reference.

Index Terms— sensor fusion, object tracking, real-time, auto-
motive, time-triggered, Flexray

Abstract— Im Automobil der Zukunft spielen Fahrerassisten-
zsysteme eine wichtige Rolle. Ein wichtiges Untersystem sind
dabei Objektverfolgungssysteme, welche andere Fahrzeuge mit
mehreren Sensoren erfassen und deren Position berechnen. Die
Architektur der derzeitigen Systeme kann jedoch oft weder
Echtzeiteigenschaften noch Determinismus oder synchronisierte
Verarbeitung garantieren. Um dieses Problem zu lösen, schlagen
wir einen Pradigmenwechsel zu einer zeitgesteuerten Architektur
vor. Ein simulationsgestützter Vergleich verschiedener Ansätze
legte die Vermutung nahe, dass die eventgesteuerten Modelle in
Szenarien mit niedriger Dynamik bessere Ergebnisse liefern, in
potentiell gefährlichen Szenarien mit hoher Dynamik aber das
zeitgesteuerte Modell von Vorteil ist. Um die Realitätsnähe der
Simulationsergebnisse zu überprüfen, wurden beide Ansätze in
einer Testumgebung mit einem Volkswagen Touran evaluiert. Das
Testfahrzeug war hierfür mit einem Laser-Scanner, einem Stereo-
Kamera-System, einem FlexRay-Kommunikationssystem, einem
Objektverfolgungssystem und einem Differential-GPS-System als
Referenz ausgestattet.

Index Terms— Sensordatenfusion, Objektverfolgung, Echtzeit,
Automobil, Zeitsteuerung, Flexray

I. INTRODUCTION

Advanced Driver Assistence Systems (ADAS) will provide
increased safety and convenience for driving future cars.
Example features are navigation support, cruise control, lane

departure warning, collision avoidance, etc. Many of these
features require the car to be equipped with sensors being
able to detect obstacles and other cars and to make an accurate
prediction of their position and velocity. This object tracking
task can be achieved best by using multiple and possible
diverse types of sensors which contribute their measurements
to a sensor fusion system. While sensor fusion provides several
advantages regarding accuracy, robustness, and cost-efficiency
(possibility to use less expensive sensors), the approach re-
quires coordination, communication, and computation with
real-time guaranties.

The time-triggered approach (Elmenreich, Bauer & Kopetz
2003) has shown to be very effective for control, coordina-
tion, and measurement of real-time systems. The properties
of a real-time control system heavily depend on the com-
munication system. In automotive systems, two communica-
tion systems have been quite prominent in the last years:
Controller Area Network (CAN) and FlexRay (Fle 2005).
Although time-triggered extensions have also been proposed
for CAN (Hartwich, Müller, Führer & Hugel 2000), CAN
is basically an event-triggered communication system, which
means that incoming data is usually processed on demand by
event triggers. FlexRay provides a dynamic event-triggered
communication together with a static time-triggered part. In
a time-triggered system, the time for a communication or
control action is fixed a priori, typically based on a periodical
time-triggered schedule which is known to the communication
partners. Thus, a time-triggered system is fully predictable
at communication level. However, the average reaction time
of an event-triggered system might be shorter than for a
time-triggered system, since data is processed as soon as it
arrives instead of at a predefined point in time. In many
existing ADAS implementations the event-triggered paradigm
is prevalent – a legacy of CAN-based system design. Since
the time-triggered approach is expected to have advantages
regarding worst-case behavior, predictability, composability,
and diagnosibility, we propose a shift from the event-triggered
paradigm to a time-triggered system design. In (Mauthner,
Elmenreich & Kirchner 2007, Mauthner, Altendorfer, Elmen-
reich & Kirchner 2007, Koplin & Elmenreich 2008), we have
analyzed event-triggered and time-triggered object tracking
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systems theoretically and by simulation. The event-triggered
system operates with unsynchronized sensors and fusion cy-
cles whose processing times vary within given lower and upper
bounds while the time-triggered system operates with synchro-
nized sensors and fusion cycles whose processing times are
constant and equal to the upper bounds. The results suggest
that although non-time-triggered approaches perform well in
scenarios with low process noise, the time-triggered model
becomes advantageous in potentially dangerous scenarios with
high dynamics. In this paper we present the results of a case
study implementation featuring a standard car being equipped
with sensor hardware and a computing cluster in order to
validate the results of the simulation for real life scenarios. The
results of several test drives, although being affected by the
limited possibility of exact reference measurements, confirm
the feasibility of using a time-triggered approach for object
tracking.

II. CONCEPTS AND RELATED WORK

A. Sensor Scheduling

The scheduling of sensors has received considerable at-
tention over the last years, especially in the fields of mili-
tary (Stromberg, Andersson & Lantz 2002) and robotics (Fox
1994). This is due to the fact that in both fields multiple
sensors provide object state observations for one or multiple
feature services under a dynamically changing environment.

If object state observations from heterogeneous sensors are
available and the environmental conditions or the demand
for object state observations changes drastically over time,
the activation of the most appropriate sensor set can lead to
improved results (Suranthiran & Jayasuriya 2004, van Norden,
de Jong, Bolderheij & Rothkrantz 2005) or the reduction of
sensor usage costs (Li, Krakow, Chong & Groom 2006).

If more than one feature service requests object state obser-
vations from multiple sensors but the object state observations
can either be used exclusively for one specific feature service
or the resources are limited in such a way that not all requests
for object state observations can be handled simultaneously, a
sensor allocation has to be performed. According to Schrage et
al. (Schrage & Gonsalves 2003), the goal of sensor allocation
is to minimize the resource usage costs and to maximize the
likelihood that all mission objectives will be completed.

In (Mehra 1976), Mehra uses different norms of the ob-
servability and the Fisher information matrix (Spall 2008) as
criteria for the optimization of measurement scheduling and
shows that it is preferable to cluster measurements around
specific design points tk.

Avitzour and Rogers (Avitzour & Rogers 1990) present a
theory of optimal measurement scheduling for least squares
estimation which is based on the assumption that the cost
of a measurement is inversely proportional to the variance of
measurement noise and that it is possible to distribute the total
measurement cost arbitrarily among a set of measurements.

In (Mourikis & Roumeliotis 2006), Mourikis et al. compute
the localization uncertainty of a group of mobile robots
wherein the localization uncertainty is determined by the
covariance matrix of the equivalent continuous-time system

Fig. 1. Out-of-sequence measurement problem

at a steady state and is expressed as a function of the sensor
measurement sampling frequencies. Based on these results, the
optimal sensor sensing frequencies for each sensor on every
robot can be determined and used for sensor parametrization.

However, it lacks a study of how the mean system perfor-
mance is affected by a paradigm shift from a non-deterministic
scheduling and transmission concept, where sensors run free
and sample measurements at highest rate, to a time-triggered
scheduling and transmission concept, where sensors have a
fixed sampling rate and measurement time stamps can be
controlled.

B. Out-of-Sequence-Measurements

The fusion of object state observations (and related pro-
cesses) is usually triggered by incoming measurements and
the demand for outgoing real-time images. Often, the pro-
vision of real-time images to the feature service subsystem
is fixed, because the employed control loop demands cyclic
updates. Therefore, special focus is placed on the processing
of incoming object state observations.

If the time stamp of an object state observation is more
recent than the time instant which the associated object state
represented before the prediction, the corresponding mea-
surement is classified to be in-sequence. If the object state
observation is not more recent than the instant which the
associated object state represented before a retrodiction, the
corresponding measurement is classified as out-of-sequence
measurement (OOSM).

Figure 1 depicts a situation with an out-of-sequence mea-
surement problem independent from communication system
issues, i.e., the transmission times of object state observations
from both sensors to an object tracking subsystem, ∆t

etb1/ttb1
PT

and ∆t
etb2/ttb2
PT , are approximately equal. Due to different

observation preprocessing times, ∆tsens1PT > ∆tsens2PT , the mea-
surement originating from sensor 2 is received earlier at the
object tracking subsystem than the measurement originating
from sensor 1, although the measurement from sensor 2 repre-
sents a more recent snap-shot of the surrounding environment.

To deal with out-of-sequence-measurements, two ap-
proaches have been extensively explored in research through-
out the fusion community, i.e., the buffered (BUFF) approach
and the advanced algorithms (ADVA) approach.

In the BUFF approach, measurements are stored and kept
back until a chronological processing can be guaranteed. In a
time-triggered system, a BUFF approach can be easily real-
ized, but in general the BUFF approach worsens the temporal
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accuracy of the fused image. In the ADVA approach, a Kalman
filter is used to make a prediction of the late measurements for
the current system time. The ADVA approach can be realized
with event-triggered and time-triggered systems, but comes
with a higher complexity and requires a proper prediction
model. There are several ADVA approaches that deal with
one-lag and multi-lag delays, filtering and tracking, linear and
non-linear systems as well as single-model and multi-model
systems.

A more detailed discussion of the two approaches can be
found in (Koplin & Elmenreich 2008) and (Koplin 2009).

III. ARCHITECTURE OF THE OBJECT TRACKING SYSTEM

The object tracking subsystem consists of a laser scanner,
a stereo camera system, a PC104-based processing host and
a MicroAutoBox prototyping unit. The stereo camera system
is a “scabor” stereo vision system developed by the tech-
nical University of Cluj-Napoca and the laser scanner is an
ALASCA laser scanner from Ibeo Automobile Sensor GmbH.
Both sensors provide the possibility to be operated in a time-
triggered mode and have been developed for the tracking of
objects in a road setting.

The laser scanner transmits its scans over a private CAN
to an industrial PC (IPC) for preprocessing. The stereo cam-
era system also sends its frames over a separate CAN to
a PC-based preprocessing unit. The extracted object state
observations are sent over a CAN/FlexRay gateway and the
FlexRay bus to the object tracking subsystem that performs
the data fusion. The fusion is processed on a PC104 system
running Linux/RTAI. An object state is represented by a
vector consisting of the estimated Cartesian coordinates, the
moving direction of the object, the object’s dimensions, and
its speed and acceleration. For a maximum number of 25
observed or tracked objects, the fusion interval has been
determined to be 10 ms for the given hardware resources. An
update for the feature service subsystem is generated every 40
ms. After updating object states with associated object state
observations, the RT images of the object states are delivered
from the PC104 via FlexRay to the micro autobox, hosting
the feature services.

As a reference for the tracking system, we used a
Differential Global Positioning System (DGPS) mounted on
the tracked vehicle. For determining the direction in which the
vehicle bearing the sensors was aligned, the difference between
two DGPS measurements at different spots was taken.

Fig. 2. System architecture

The equipment has been installed in a Volkswagen Touran
(see Fig. 3). The task of the system is to measure the position
of objects in front of the car. In order to increase robustness
and accuracy, the measurements from both sensory systems
are fused. The case study implementation supports three
configurations: a BUFF configuration; an ADVA configuration;
and a time-triggered synchronized configuration. For the time-
triggered synchronized configuration we followed the time-
triggered sensor fusion model (Elmenreich & Pitzek 2001),
thus each sensor has a pre-defined measurement schedule the
fusion system can rely on.

IV. EXPERIMENT SETUP

The experiment was conducted for two scenarios. In the first
scenario (left part of Fig. 4), the vehicle bearing the sensors
is stationary and another car accelerates in direction of the
longitudinal axis of the vehicle. In the second scenario, as
depicted in the right part of Fig. 4, the moving vehicle runs
at a constant speed in the direction of the stationary vehicle
and turns when it is around 20m ahead. In both scenarios the
vehicle bearing the sensors does not move in order to avoid a
cumbersome correction of the ego-motion. A test drive took
about 1500 ms. During one run the tracked vehicle moved
from 30 m to 40 m in the positive x direction (average speed
of 6.7 m/s).

V. EXPERIMENTAL RESULTS

In this section, the results of four test drives (two for
each scenario) are shown. The first test drive in each sce-
nario represents the time-triggered unsynchronized BUFF and
ADVA configuration, as both configurations use the same
schedule. The second test drive represents the time-triggered
synchronized configuration. The results of the test drives are
depicted in Figures 5-7. Each figure consists of an RT x
and an RT y plot. In each plot, object state observations
from the DGPS, “dgps”, are indicated by circles, object
state observations from the laser scanner, “lsc”, are indicated
by crosses, object state observations from the stereo vision
system, “scabor”, are indicated by triangles, and RT images
of the object state, “fusion”, are indicated by squares. The
arrows connect the points in time were a measurement of the
laser scanner is taken and where this measurement finally has
become integrated into the fused result. Fusion instants are
indicated by boxed numbers.

Fig. 5 depicts the x and y plots for the time-triggered
synchronized configuration in a test drive for scenario 1. In
the x plot, which corresponds to the lateral axis of the car, the
accuracy of the stereo vision system and the laser scanner are
about the same. In the y direction, the stereo vision system
yielded better results than the laser scanner. Unfortunately, in
several points the DGPS showed larger variations than the
actual sensors, which does not support the DGPS system as a
reliable reference.

The BUFF and ADVA approach have the same underlying
schedule for the sensors and the bus system and have been
evaluated in the same run. Therefore, the left and right
part of Fig. 6 are in the DGPS and sensor plots. However,
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Fig. 3. Test vehicle and hardware installation in the trunk

Fig. 4. Test scenarios

Fig. 5. Time-triggered synchronized configuration, scenario 1

Fig. 6. BUFF vs. ADVA approach (only y-plots), scenario 1
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Fig. 7. ADVA vs time-triggered synchronized approach (y vs. x plots), scenario 2

Fig. 8. BUFF approach (y vs. x plots), scenario 2

differences arise in the fusion schedule, which result in a
slightly different fusion plot, which can be recognized when
comparing the respective arrow indicators. Nevertheless, the
differences between both approaches are too small to make a
statement regarding a preferable approach.

The fused results for both runs of scenario 1 indicate
variations in the same order of magnitude for all three config-
urations (note the different scale in Fig. 5 and Fig. 6). Due to
the better sensor accuracy, the variations along the x axes are
much smaller (see left side of Fig. 5).

Fig. 7 compares the results from the two runs on the second
scenario for the ADVA and the time-triggered synchronized
configuration. Since the moving car was turning, there is a
significant movement in both directions and we present the two
runs as x-y plots. The figures depict again a considerable noise
on the DGPS reference and, in overall, a similar performance
for both configurations. Again, the BUFF evaluation (Fig. 8)
has been done concurrently with the ADVA approach which
yielded very similar results.

VI. CONCLUSION

The inaccuracies of the DGPS system did not allow to make
predictions about the average performance of the different
approaches. However, the DPGS values support the interpre-
tation of the plots as an approximate indicator for the x and y
positions. For predicting the mean performance of a particular
approach, we showed in (Koplin & Elmenreich 2008) how to
predict the performance based on extensive simulation results.

The achieved accuracy in the test runs is sufficient for
typical ADAS applications for all configurations. Thus, even if

an event-triggered approach can provide a slightly better result
in some situations, the predictability of the time-triggered
approach will be more important for the functionality of the
system. Furthermore, the test runs show that the expected
accuracy difference between the non time-triggered and the
time-triggered approach is superimposed by real life non zero
mean sensor signal errors. Hence, for sensors of the current
generation, the time-triggered approach can be followed with-
out experiencing a measurable performance loss. Thus, we
propose a time-triggered architecture for automotive object
tracking applications.
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