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Abstract—This paper investigates distributed consensus for
density classification in asynchronous random networks with
faulty nodes. We compare four different models of faulty
behavior under randomized topology. Using computer simula-
tions, we show that (a) faulty nodes’ impact depends on their
location and (b) faulty nodes with persistent failures inhibit
consensus stronger than commonly-used Byzantine faulty nodes
with random failures. We also show that (c) randomization
by Byzantine faulty nodes can be strongly beneficial for
binary consensus and (d) topology randomization can increase
robustness towards faulty node behavior.
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I. INTRODUCTION

Distributed consensus algorithms can be used in systems,

where centralized decision making is difficult or impossible.

Such conditions often reported in distributed mission plan-

ning [1], target tracking [2] or database management [3].
In a distributed consensus system, every node follows

simple decision rules, utilizing local node-to-node communi-

cation to perform global coordination. Fault-tolerance is an

essential property for such tasks. Studies on fault-tolerance

of distributed consensus consider influence of noise [4],

[5], system-wide synchrony [6], topological changes [7]

and faulty nodes [8], [9]. Faulty node behavior is one of

the main impediments to consensus [8]. A faulty node is

generally defined as a Byzantine node, a node that can

have arbitrary failures. Such node participates in consensus,

but floods the network with faulty information. In the

asynchronous network of N nodes M of them being faulty,

already M = 1 can prevent consensus [9]. System-wide

synchrony is another substantial factor: increasing synchrony

promotes consensus [10], [11], and can increase robustness

towards faulty nodes: synchronous systems can tolerate

M ≥ N−1
3 [8].

Moreira et.al. [12] show that a simple consensus rule,

namely Simple Majority (SM) randomized by errors and

topology, can outperform one of the best rules — Gacs-

Kurdyumov-Levin (GKL) consensus [13].

In this paper we investigate different models of faulty

node behavior in asynchronous networks with randomized

topologies. Using GKL and SM we show that: (a) faulty

nodes with persistent failure have stronger impact on consen-

sus that commonly used Byzantine faulty nodes, (b) impact

of faulty nodes depends on their position on the network, (c)

randomization by topology can promote robustness towards

faulty nodes, and (d) Byzantine faulty nodes can provide

randomization, beneficial for consensus.

II. SETUP AND NOTATION

For network modeling we use Watts-Strogatz (WS)

graph [14]. WS networks are widely used to study systems

interactions, spanning from technical systems [15] to natu-

ral [16] and social networks [14]. WS network is initially

modeled as a ring of N nodes, where each node is connected

with the next K nodes. Further, with rewiring probability P
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Figure 1. WS graph at P = 0, a network is a 2K — connected ring,
N = 15,K = 2.

each link is substituted with a link to a random node on
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the network. I.e., at P = 0 a network is a 2K-connected

ordered lattice (Figure 1). At P = 0.5 a network is a Small-

World where approximately half of the links are random

(Figure 2). At P = 1 a network is a fully random graph

(Figure 3). Thus, with varied P WS graph can produce

networks, ranging from an ordered grid to a fully random

network.

Nodes, connected to the node i form the node’s i vector

of neighbors Ni. Nodes j ∈ Ni, satisfying j = (i +
z)modN, ∀ z ∈ {0..K}, sorted in ascending order form

the vector of right- side neighbors of node i denoted as

Ri, remaining nodes j ∈ Ni form vector of left-sided

neighbors Li. We model networks with ‖Ni‖ = 2K,

‖Li‖ = ‖Ri‖ = K.
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Figure 2. WS graph at P = 0.5, ∼ 50% of the initial links are substituted
with random links, N = 15,K = 2.
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Figure 3. WS graph at P = 1, all links are random and network is a
small-world, N = 15,K = 2.

III. DISTRIBUTED DENSITY CLASSIFICATION

Below we describe the distributed density classification,

also known as majority sorting or binary consensus.

Consensus is performed in a network of N nodes. At a

first time step t = 0 every node i is randomly assigned

with a binary state σi ∈ {−1, 1}. A set of σi at t = 0

is called Initial Configuration and denoted as I . The sum

of all σi at a time t = 0 is called the density of I
and is denoted by ρ, ρ ∈ {−N . . .N}. At every time

step t > 0 each node updates its state following a given

consensus rule, based on its own state information and state

information, received from neighboring nodes. We focus on

wait-free consensus: such algorithms are terminated after T
time steps, whether consensus was reached or not. In a task

of density classification all nodes are expected to converge

to a single state, corresponding to initial majority of state

distribution within T time steps. I.e., network is considered

as converged if there exists time t ∈ {0, . . . , T}, such that∑N
i=0 σi[t] = −N for ρ < 0, and

∑N
i=0 σi[t] = −N for

ρ > 0. We use T = 2N originally defined in [17].

A. Simple Majority Consensus

Following Simple Majority consensus, each node on the

network calculates its new value on basis of its current state

and the state of its closest neighbors, i.e.:

σi[t+ 1] = G

⎛
⎝σi +

∑
j

σj [t]

⎞
⎠ , (1)

where j ∈ Ni. The update function G is [12]:

G(x) =

{ −1 for x < 0
+1 for x > 0

. (2)

B. Gacs-Kurdyumov-Levin Consensus

Gacs-Kurdyumov-Levin Consensus is known as one of

the best human-designed rules for density classification [17],

[18]. GKL is defined as follows. Each node i on the network

calculates its new value depending on its own current state:

if σi < 0 it accounts for its first and third neighbors to the

left, and its own state. If σi > 0 node considers its first and

third neighbors to the right, and its own state, i.e.:

σi[t+ 1] =

⎧⎨
⎩

G
(
σi[t] + σl1 [t] + σl3 [t]

)
for σi[t] < 0,

G
(
σi[t] + σr1 [t] + σr3 [t]

)
for σi[t] > 0.

(3)

Here, l1 and l3 are the first and the third neighbor to the

left and r1 and r3 are the first and the third neighbor to the

right, respectively.

One can see that GKL is a special case of SM with a

value-dependent direction bias: in GKL nodes select neigh-

bors based on their own value.

C. Update Mode

We implement synchronous and asynchronous update

functions [19]. With synchronous update all nodes in the

network update to the new state simultaneously. With asyn-

chronous update nodes are updated one after another, ac-

cording to their indices, sequentially.
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D. Faulty Nodes

We implement two schemes of faulty behavior: Byzantine

random failure [9], [20] and non-Byzantine persistent failure.

We model faulty nodes as follows. At a starting time M
nodes are added to the network and labeled as “faulty”.

Further, faulty nodes counter consensus according to one

of the following failure model.

1) Byzantine Failures: In Byzantine failure scheme, a

faulty node i randomly changes its state σi ∈ {−1, 1}, in-

dependent from received messages, and broadcasts it among

its neighbors. Such faulty nodes are not excluded from the

consensus, i.e., consensus is considered as reached when all

N +M nodes converged to a single state.

2) Non-Byzantine Failures: In non-Byzantine, persistent

failure model faulty nodes are initially assigned with a state

σM opposite to the initial majority:

σM =

{ −1 for ρ > 0
+1 for ρ < 0

. (4)

In such a scheme, faulty nodes broadcast their state to

the neighbors but do not update it. Non-Byzantine faulty

nodes are excluded from the consensus, i.e., consensus is

considered as reached if within 2N time steps all N non-

faulty nodes have reached the same state.

For each scheme we use distributed and clustered posi-

tioning of faulty nodes in the network. With clustered layout

all faulty nodes are arranged next to each other, and position

of the cluster is randomly selected for each simulation run. In

distributed positioning faulty nodes are randomly distributed

over the network.

IV. PERFORMANCE STUDY

As performance metric we measure convergence rate R —

a fraction of a 10, 000 initial configurations that an algorithm

successfully classifies. We simulate over 30 sets combined of

10, 000 I each and plot average values with 95% confidence

intervals.

We use test sets of initial configurations with ρ dis-

tribution approximated by a uniform discrete distribution,

ρ ∼ U(−N,N). Simulation engine is built in C++ using

boost libraries (www.boost.org).

A. Update Mode Impact

Figure 4 shows convergence rate of GKL and SM in or-

dered networks of N ∈ {29, . . . , 149} with different update

modes. It shows that test sets with uniform density distri-

bution result in higher R than some other approaches [12],

[13]. It also shows that update mode has different influence:

lack of synchrony inhibits convergence rate for GKL, while

for SM lack of synchrony promotes consensus. This can

be explained by the fact that asynchronous updates inhibit

the direction bias of GKL, while for SM random state

updates create a temporal bias, similar to that of GKL.

Figure 4 indicates that R is decreased with growth of N .
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Figure 4. GKL and SM in ordered networks of N ∈ {29, . . . , 149}
nodes. ρ ∼ U(−N,N), K = 3,M = 0.

Such decrease can be related to the fact that systems with

higher ratio N
K are more prone to clustering [16] which can

inhibit binary consensus. Further we focus on asynchronous

networks which generally present a more difficult case for

consensus [10].

B. Byzantine Faulty Nodes

Figures 5 and 6 illustrate how Byzantine faulty nodes

influence asynchronous SM and GKL under topology ran-

domization.

1) Simple Majority with Byzantine Faulty Nodes: Fig-

ure 5 shows that Byzantine faulty nodes always decrease

the convergence rate of SM. It also shows negligible dif-

ference in impact between faulty nodes located in a single

cluster (Figure 5b) and nodes, randomly distributed over the

network (Figure 5a). Figure 5 indicates that topology ran-

domization (growing P ) promotes consensus — the effect

that can be observed in all studied setups.

2) Gacs-Kurdyumov-Levin Consensus with Byzantine
Faulty Nodes: Figure 6 shows that Byzantine faulty nodes

can promote consensus. Figures 6a and 6b show that in

ordered networks (P = 0) Byzantine faulty nodes can

increase R. Topology randomization (P ≤ 0.04) lowers

this relative gain, but with further growth (P > 0.04)

promotes consensus. Impact of faulty nodes location is

weakly signified. Observations on impact of Byzantine faulty

nodes can be generalized as follows:

1) Byzantine faulty nodes inhibit SM consensus.

2) Asynchronous GKL consensus in ordered grids, ran-

domized by Byzantine faulty nodes can reach R �
100%.

3) Topology randomization can increase convergence rate

of asynchronous GKL and SM.

4) Topology randomization can increase robustness to-

wards faulty nodes.
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a) Faulty nodes are randomly distributed over the

network.
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b) Faulty nodes are located in a single cluster.

Figure 5. Asynchronous SM with Byzantine faulty nodes. Topology
randomization in a network of N = 99 nodes.

R � 100% achieved by an asynchronous GKL in ordered

grids with randomization by Byzantine faulty nodes is higher

than R of any other algorithm to our knowledge, and should

be studied in more detail. Such positive impact of faulty

nodes can be explained by randomization they impose on

information exchange. It was previously shown that similar

effects can promote consensus [21], [12]. Increase of R
under growing P can be explained by both topology ran-

domization [12] and by the fact that in WS model growth of

P increases the average link length [14], which contributes

to higher R.

C. Non-Byzantine Faulty Nodes

Figures 7 and 8 show convergence rate of GKL and SM

with non-Byzantine faulty nodes.

1) Simple Majority with Non-Byzantine Faulty Nodes:
Pairwise comparison of Figures 5 and 7, shows that non-
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a) Faulty nodes are randomly distributed over the

network.
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b) Faulty nodes are located in a single cluster.

Figure 6. Asynchronous GKL with Byzantine faulty nodes with topology
randomization, N = 99.

Byzantine nodes inhibit consensus stronger than Byzantine

nodes. Figure 7 shows that faulty nodes located in a single

cluster, have higher impact on R than nodes randomly

distributed around network.

2) Gacs-Kurdyumov-Levin Consensus with Non-
Byzantine Faulty Nodes: Figure 8 shows that similarly

to SM, non-Byzantine faulty nodes inhibit GKL stronger

than Byzantine faulty nodes (Figure 6). Nodes located in

a single cluster, decrease R larger than nodes randomly

placed over the network.

These observations can be summarized as follows:

1) Non-Byzantine faulty nodes inhibit consensus stronger

than Byzantine nodes.

2) Faulty nodes randomly distributed over the network,

have lower impact than nodes allocated in a cluster.

3) Topology randomization can increase R.
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a) Faulty nodes are randomly distributed over the

network.
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b) Faulty nodes are located in a single cluster.

Figure 7. Asynchronous SM, topology randomization with non-Byzantine
faulty nodes. Network of N = 99 nodes.

4) Topology randomization can partially restore drop in

R induced by faulty nodes for SM.

The first effect can be explained by the fact that nodes

with non-Byzantine failure model persistently inhibit con-

sensus, while Byzantine faulty nodes can sometimes pro-

vide correct input. The second effect can be explained by

dithering of the negative impact of faulty nodes into larger

set of inhibited nodes, and thus allowing the latter ones

to overcome the disturbance. All models but one positively

respond to topology randomization, indicating growth of R
even with faulty nodes. The positive influence of topology

randomization can be explained by dithering of topological

clusters [15]. Growth of rewiring probability P in WS net-
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a) Faulty nodes are randomly distributed over the

network.
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b) Faulty nodes are located in a single cluster.

Figure 8. Asynchronous GKL, topology randomization with non-
Byzantine faulty nodes, N = 99.

works not only randomizes the topology, but also increases

the average link length in the network [14], which also

contributes to gains in R. The only model that does not

indicate increase in R under growing P is asynchronously

updated GKL with non-Byzantine faulty nodes. This can be

explained by the value-dependent direction bias of GKL.

This bias provides for GKL’s higher R in ordered networks,

but it can be inhibited by topology randomization.

V. CONCLUSIONS

This paper studies binary density classification in ran-

dom asynchronous networks with faulty nodes. Presented

results indicate that topology randomization can increase

convergence rate of algorithms with faulty nodes. We also

show that the impact of faulty nodes can be lowered by

altering their position: faulty nodes, randomly distributed
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over the network have lower impact on consensus than ones

clustered next to each other. We show that commonly used

Byzantine failure model inhibits binary consensus less than

persistent failure model. Further, we show that in some cases

Byzantine faulty nodes can provide beneficial randomization

that strongly promotes consensus. These observations can be

generalized according to model assumptions to a wide range

of networks from ordered grids to fully random networks.
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