Efficient Binary Consensus in Randomized and Noisy Environments
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Abstract—In this article we investigate randomized binary
majority consensus in networks with random topologies and
noise. Using computer simulations, we show that asynchronous
Simple Majority rule can reach ~ 100% convergence rate being
randomized by an update-biased random neighbor selection
and a small fraction of errors. Next, we show that such gains
are robust towards additive noise and topology randomization.
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I. INTRODUCTION

Consensus algorithms can be used in various distributed
systems to perform tasks of mission planning [1], target
detection and tracking [2] or database management [3].

In real-life networked systems algorithms with deter-
ministic execution time can be beneficial. Such algorithms
are called wait-free consensus algorithms: they are termi-
nated after certain time 7', whether overall agreement was
achieved or not [4], [5]. Wait-free consensus is sensitive
to disturbances and can decrease performance in noisy or
asynchronous environments [6], [7].

However, disturbances not only hinder consensus [6] but
can also promote it [8], [9], [10], [11]. Employment of
random processes to promote consensus is called random-
ization [9]. It was shown that various types of randomization
can increase fault tolerance [12] and convergence rate [8] of
consensus algorithms.

Results reported in [8], [10], [11] motivated us to inves-
tigate the impact of randomization on binary majority con-
sensus. In this article we study binary majority consensus in
asynchronous networks. We focus on the impact of random
neighbor selection and binary errors on Simple Majority
(SM) consensus [8], [10]. Using computer simulations we
show that asynchronous SM can outperform all known
algorithms being randomized by biased neighbor selection
and a small fraction of errors. Further, we show that gains

achieved due to such randomization are robust towards noise
and topology randomization.

II. RELATED WORK

Performance of an algorithm for binary majority con-
sensus is generally measured as convergence rate R —
a fraction of initial network configurations that results in
successful agreement (for details see section IV). Table I,

Table 1
CONVERGENCE RATE OF ALGORITHMS FOR BINARY MAJORITY
CONSENSUS. REGULAR GRID OF N = 149 NODES.

Rule Year  Design Ref. R, %
SM 1978  human-designed [6] 81.6
Davis 1995  human-designed [13] 81.8
Koza 1996  genetic programming  [13] 82.3
Juille and Pollack 1998  co-evolution [14] 86.0
Simple Majority 2004  randomized by errors  [8] > 85.0
Traffic Majority 2013  randomized, biased [15] =~90.0

partially borrowed from [13], presents the best R achieved
by different methods during last several decades. Conver-
gence rate is measured in a synchronous ordered network of
N = 149 nodes to match original conditions [6]. The best
result for deterministic (non-randomized) algorithm is shown
by algorithm evolved by co-evolution is R = 86% [14].

Randomized algorithms [8], [15] can show high conver-
gence rate. Simple Majority rule randomized by errors shows
R > 85% [8] in random networks [16], while randomized
Traffic Majority rule achieves R ~ 90% [15] in ordered
grids.

Lack of system synchrony generally decreases R [7] but
SM consensus indicates higher R in asynchronous [8] and
randomized environments [11].

Despite high R of SM in randomized environments, in
ordered noiseless networks SM shows convergence rate
below 1% (see Figure 4).



A challenging task therefore is to design a rule that is
efficient in both randomized and ordered noisy networks.

Randomization is a technique used to increase R of con-
sensus algorithms [9]. Although randomization can increase
R, it can also affect the convergence time as termination
becomes probabilistic [9]. This condition limits applicability
of randomization to wait-free consensus, such as SM, where
the algorithm is terminated after T steps, whether agreement
was reached or not [17], [5].

In this paper we focus on wait-free SM consensus ran-
domized by biased neighbor selection and a small fraction
of errors. We show that such randomization can increase R
of SM to ~ 100%. We also show that achieved gains in R
are robust towards noise and topological randomization.

III. SETUP AND NOTATION

For network modeling we use Watts-Strogatz graph [16].
Network is initially modeled as the 2K -connected one-
dimensional cellular automaton of N nodes, closed in a
ring to avoid boundary effects (see Figure 1). Further, with
rewiring probability P each link of the each node 1 is rewired
to a random node j, j ¢ {i — K,i+ K}. Le., at rewiring
probability P = 0 a network is a regular 2/ -connected ring.
At P = 0.5 a network is a Small-World graph where ~ 50%
of the links are random (see Figure 2). At P = 1 a network
is a pure random graph (Figure 3). Nodes that have links to
the node i, sorted in ascending order, build nodes’ ¢ vector
of neighbors N;. Nodes z € {N;},z > i form a vector of
right-side neighbors N,.. Nodes z € {N;},z < i form a
vector of left-side neighbors V.

Figure 1. Network is a 2K — connected ring, at P = 0. N = 15, K = 2.

IV. DISTRIBUTED BINARY MAJORITY CONSENSUS

At the first time step ¢ = 0 every node ¢ € N is
randomly assigned with a binary state o; € {—1,1}. A set
of o; at t = 0 is called Initial Configuration and denoted
as I. The sum of all o; at a time ¢t = 0 is called the
Initial Density and is denoted by p, p € {=N,...,N}. At
every time step O > ¢ > T each node updates its state
following a given consensus algorithm, based on its own
state and state messages received from neighboring nodes.

Figure 2. At P = 0.5, ~ 50% of link are random, N = 15, K = 2.

Figure 3. Network at P = 1, random graph of N = 15.

Within 7' time steps all nodes are expected to converge

to a single state, corresponding to initial majority. Le., the

network is converged if there exists time ¢ € {0,...,T},
i=N i=N

so that ).~ " o4[t] = =N for p < 0, 0r ) .~ oift] = N

for p > 0. In our simulations we use 1" = 2N, originally

proposed in [6].

A. Initial Configurations

We use test sets where each initial configuration is ob-
tained by a series of N coin-flip operations, returning 1
and —1 with equal probability [8]. With such test sets SM
shows lower R, than with test sets obtained by different
methods [10].

B. Simple Majority Consensus

Simple Majority consensus [8] is defined as follows. Each
node ¢ on the network calculates its new state based on its
own current state information and state information of its
2K nearest neighbors. Le.:

oilt+1 =G | ailt] + > oilt] | - (1)

JEN;

The update function G is [8]:

-1 forx<O0

Glr) = { +1 forz >0 @



C. Random Majority Consensus

To investigate whether randomization by errors and ran-
dom neighbor selection can be beneficial, we modify SM
into Random Majority (RM). RM updates to the new state on
the basis of its own state information and state information
received from C neighbors randomly selected from the set
of left-sided neighbors V;:

C
oilt + 11 =G [ ailt] + > i, [t] | 3)
j=1

where n; is a neighbor randomly selected from N;. To
select n; we sample from a discrete uniform distribution
with repetition, i.e., the same neighbor can be selected more
than once. State information o; ; received by a node 7 is
then substituted with erroneous with probability #:

1,1 _ J oj[t] with probability (1 —n)
oilt] = { —o[t] with probability n - @

We study Random Majority consensus with C' € {2,4}
randomly selected neighbors and error probability n €
{0.05,0.07,0.08}. RM utilizes update-biased neighbor se-
lection scheme, where node i selects neighbors from the
set of left-side neighbors. Given a sequential update scheme
(see Section IV-D), it allows the node to utilize the latest
available state information of the neighboring nodes.

This rule differs from the Random Neighbor Majority
consensus described in [11]. Random Majority, described
here, employs biased random neighbor selection procedure
and additional randomization by binary errors, in contrast to
balanced neighbor selection in [11].

D. Update Mode

We use two common state update schemes: synchronous
and asynchronous [7]. In synchronous mode, all nodes up-
date their states simultaneously. In the asynchronous mode,
nodes are updated sequentially, one after another, according
to their indices. To update its state, each node uses the latest
available states of its neighbors.

E. Additive Noise

We simulate additive noise at received messages by using
the following transition:

0i,j [t] — 04,5 [t] + ¢j . (5)

We model noise as Additive White Gaussian Noise
(AWGN), ¢; ~ N(O,(%)Q), A € [0,1]. Preceding stud-
ies [18], [19] also consider AWGN as the most common
noise type in real environments.

V. PERFORMANCE STUDY

Performance is measured in terms of convergence rate
R — a fraction of a 10,000 initial configurations that
result in a successful agreement. We simulate over 30 sets
combined of 10,000 I each and plot average values with
95% confidence intervals. We use the original 7' = 2N [6],
and simulate over networks with N € {29,...,160}.
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Figure 4. SM in ring lattices of N € {29,...,149}, K = 3.

A. Simple Majority in Ordered Networks

Figure 4 shows convergence rate of SM in ordered net-
works. These results resemble previously reported perfor-
mance of SM in ordered networks [8], [11], showing that
R is decreasing with larger NV, and that lack of synchrony
increases R of SM. Latter effects are studied in more detail
in [11].

Further we focus on asynchronous networks, which gen-
erally inhibit consensus [7].

B. SM and RM in Ordered and Randomized Networks

Figure 5 shows convergence rate of asynchronous SM and
RM over number of nodes IV in ordered and randomized
WS networks. It illustrates that in ordered networks RM
outperforms SM and other algorithms for binary majority
consensus reaching R ~ 100%. In random networks SM
outperforms RM with N < 40. In random networks RM
shows R ~ 68%, which is robust towards system growth,
although lower than R of the best algorithms (see Table I).

C. Robustness Towards Additive Noise

Figure 6 shows influence of additive noise on asyn-
chronous RM with C' = 2 and 1 € {0.05,0.07,0.08} in
ordered grids. It indicates that in ordered grids, RM with
C = 2 can outperform all known algorithms with noise
magnitudes A < 0.2 for n = 0.05, A < 0.4 for n = 0.07,
A € [0.1,0.5] for n = 0.08.



—6— RM, Ordered graph - ®- RM, Random graph

—B— SM, Ordered graph - ®- SM, Random graph
1 ! ! A o 4 g

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0 ‘ ‘ ‘ e = o .
20 40 60 80 100 120 140 160
Number of nodes, N

Convergence rate, R

Figure 5.  Asynchronous SM and RM in ordered and random networks.
“Ordered graph” stands for P = 0, “Random graph” stands for P = 1.
N e{29,...,160}, K =3, C =4,n = 0.08.
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Figure 6. Asynchronous RM in ordered grids (P = 0) with additive noise.
N=99,K=3,C=2.

Figure 7 shows R of RM with C' = 4 randomized by
additive noise. It shows that with larger number of randomly
selected neighbors RM increases R and robustness to noise.
RM with C = 4 and n € {0.07,0.08} shows R ~ 100%.
To our knowledge this is the best result for distributed
binary majority consensus in ordered grids. With growing
noise magnitude R decreases to 90% (previous best R for
randomized rule) at A = 0.3.

D. Robustness Towards Randomized Topology

Figures 8 and 9 show how topology randomization
changes R of asynchronous RM with C € {2,4} and
n € {0.05,0.07,0.08} in noiseless networks. Figure 8
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Figure 7. Asynchronous RM in ordered grids (P = 0) with additive noise.
N=99,K=3,C=4.
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Figure 8. Asynchronous RM in noiseless networks (A = 0) with topology
randomization. N = 99, K = 3,C = 2.

shows that RM with C = 2 and n € {0.05,0.07} can
reach R > 90% with topology randomization P < 10% and
P < 20% respectively. It also indicates that with p = 0.08
RM shows R > 82% with P < 0.6.

Figure 9 indicates that increase of C' from 2 to 4 increases
R and promotes robustness towards topology randomization.
Thus, maximum R is increased to ~ 100% and robustness
towards topology randomization is promoted to P = 0.45
at the convergence rate of R > 90%.

Figures 6 — 9 show that employed randomization
schemes provide different influence. Enforced errors on
received information (7)) significantly increase robustness
towards noise and random topologies, while increase in
the number of randomly selected neighbors (C') promotes
growth of R. Combined, these two types of randomization
can increase convergence rate of SM from R ~ 1% (in the
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Figure 9. Asynchronous RM in noiseless networks (A = 0) with topology
randomization. N = 99, K = 3,C = 4.

network of N = 149) to R ~ 100%. Similar effects were
previously shown to promote SM consensus [8]. Land and
Belew [20] show that consensus algorithms cannot reach
R = 100%, however, this restriction applies to deterministic
algorithms. Overall, these results can be summarized as
follows:

« RM consensus, randomized by errors and biased neigh-
bor selection, shows R higher than any other algorithm
for binary majority consensus in ordered grids;

e RM shows R higher than other algorithms with noise
magnitudes A < 0.35 and topological randomization of
P <0.45;

« In topologically randomized environments RM shows
R lower than Random Neighbor Majority (with
noise) [11].

Random Majority consensus employs biased randomiza-
tion by neighbor selection and randomization by errors
enforced on received information. This embedded random-
ization promotes consensus in ordered grids and increases
robustness towards noise and topology randomization. As
mentioned earlier, Random Majority utilizes randomization
scheme different from that described in [11]. Due to random-
ization it shows higher R than Random Neighbor Majority,
described in [11], but lower robustness towards noise and
randomized topology.

VI. CONVERGENCE ANALYSIS

Below we analyze the convergence dynamics of the RM.
Figure 10 shows density evolution in the system with
asynchronous RM over time. p is registered at each time
step t € {0,...,T} for independently evolved 1.000 initial
configurations. Density evolution shows that systems tend
to converge to a correct majority within the time limits,
although system exhibits a fraction of stochastic switching.
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Figure 10. Density evolution over time, asynchronous RM in ordered
networks (P =0). N =99, K = 3,C =4, n = 0.05.

This explains the high R of RM but indicates that ran-
domized binary consensus cannot guarantee convergence in
a wait-free manner. This happens due to random dynamics
that can disrupt the state of agreement.

VII. CONCLUSIONS

In this article we study binary majority consensus in
asynchronous networks with randomized topologies and
additive noise. Using computer simulations, we show that
a small fraction of errors and random neighbor selection
can increase convergence rate of SM consensus to ~ 100%.
Convergence rate achieved by proposed Random Majority
consensus (=~ 100%) exceeds that of all other published
results for both ordered (R = 86% [14], R ~ 90% [15])
and random (R > 90%, [8]) networks. Gains, achieved
due to such randomization, are robust towards topology
randomization and noise. Convergence analysis shows that
although systems converge to the correct agreement within
a given time 7', it does not guarantee stable agreement in
a wait-free manner. This extends results previously reported
in [10], [11].
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