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Abstract—The design of robotic controllers through evolution-
ary methods requires making a large number of choices about the
experimental setup, which are often left to the expertise or naı̈veté
of the experimenter. Although much attention is normally given
to the fitness function or the genotype-to-phenotype mapping
determining the robot controller, the robot configuration is often
selected with little care. Yet, an ill-defined configuration—in
terms of the selected subset of the sensory-motor system, or
in the pre-processing of the raw sensor data—may be decisive
in determining the failure of the evolutionary process. In this
paper, we study the effect of different robot configurations on
the ability to evolve efficient behaviors for a swarm robotics
system. In this domain, the choice of a good configuration is
fundamental as even small details can lead to large differences
in the group behavior. To demonstrate the importance of the
robot configuration, we test different alternatives and measure the
group performance on a bi-objective scale. We find that different
configurations not only have a strong effect on performance, but
they also correspond to behaviors with radically different features
concerning the organization of the group.

I. INTRODUCTION

Evolutionary Robotics (ER) can be a powerful method for
the automatic synthesis of robotic systems, as demonstrated in
the research carried out in the last two decades [1], [2], [3],
[4], [5]. However, despite the potential advantages of such an
automatic methodology, the success/failure of an ER experi-
ment is often left to the expertise/naı̈veté of the experimenter.
Indeed, it is often the case that many different choices of the
experimental setup are arbitrarily performed, without relying
on a well-assessed methodology. The robustness and flexibility
of the evolutionary method sometimes counterbalances ill-
conceived setups, but this cannot be a priori guaranteed.
The situation is possibly worsened for collective and swarm
robotics, due to the greater variability and dynamism char-
acterizing these systems. Trianni and Nolfi [6] recognized
the need for an engineering methodology in ER, pointing
to four different aspects that must be taken into account
when designing an experiment: the sensory-motor system of
the robots, the genotype-to-phenotype mapping, the fitness
function and the ecology. They analyzed the challenges posed
by the application of ER methods to swarm robotics and

showed that a small difference in the communication protocol
exploited by the robots had a huge impact on the scalability
of the evolved solutions [6].

In this paper, we follow this line of thought by addressing
an issue that is often disregarded in ER research, that is, the
choice of the sensory-motor system of the robots, or, more
generally, the robot configuration. The robot configuration
subsumes the set of available sensors and actuators that are
used in the ER experiment, together with the necessary pre-
processing of raw sensor readings and the post-processing of
actuator commands. In the collective/swarm robotics case, the
robot configuration also includes the communication devices
and protocols to allow the exchange of information between
robots. In short, the robot configuration corresponds to every-
thing that is at the interface between the control system of a
robot and the robot’s environment.

The robot configuration is typically not modified by an
evolutionary process.1 It is usually chosen through intuition
or experience, often relying on the smallest set of sensors
and actuators, minimizing pre- and post-processing in order
to limit the intervention of the experimenter and then letting
the evolutionary machinery optimize the system within the
given constraints. We believe that this approach is ill-posed
for evolving complex robotic systems, such as swarm robotics
ones. Indeed, these systems are very sensitive even to minor
changes in their configuration, which might easily lead to
unpredictable or unwanted system behavior [6]. Therefore,
even if the selection of the robot configuration may seem a
trivial issue, a proper choice can hardly be done without a
priori information on the effects it has on the evolutionary
dynamics. In this paper, we corroborate this claim with a well-
grounded experimental setup, and we point to the need of
methodological tools that support the choice of the best robot
configuration.

To demonstrate our claims, we have chosen to evolve a
coordinated motion behavior (“flocking”) for a swarm of
autonomous wheeled robots. This is a common benchmark for

1But see [7] for a prototypical case of brain-body coevolution.



swarm robotics, and many different studies have dealt with it
to demonstrate its feasibility in different contexts [8], [9], [10].
This is mainly due to the large body of knowledge available
on both the biological systems displaying coordinated motion
[11], [12], [13] and the underlying self-organizing process,
which has been extensively discussed and understood [14],
[15], [16], [17]. On this bases, we can design our evolutionary
experiment to provide the robots with the relevant information
needed to display flocking behavior.

Generally speaking, flocking can be obtained by three basic
individual rules: collision avoidance, flock centering and ve-
locity matching. The first two rules serve to achieve cohesion
in the group, while the third one leads to the alignment of
the individuals in a coherent direction, which is necessary for
group motion. Collision avoidance and flock centering can be
easily executed relying on the distance and the bearing of
close neighbors. Instead, velocity matching usually requires
the knowledge of their relative heading. In order to evolve
flocking in a group of robots, we exploit group cohesion and
motion as the objectives to be maximized by our evolutionary
algorithm. We test different robot configurations, which are
designed to provide distance, bearing and relative heading
information. Finally, we compare the features of the evolved
behaviors for their capability to display efficient coordinated
motion in the group.

In this study, we evolve robotic controllers exploiting a
multi-objective evolutionary algorithm [18]. Multi-objective
evolution leads to a wide exploration of the search space at the
cost of a more complex analysis of the solutions that constitute
the obtained Pareto front. In contrast to optimizing for a single
aggregated measure, a multi-objective approach explores all
the possible trade-offs between possibly conflicting objectives
such as group cohesion and motion, and therefore the evolu-
tionary process can produce a more diverse set of candidate
solutions. By investigating the evolved behavior at different
points on the Pareto front, we can explore the effect of a
given robot configuration at large, without constraints from
an averaging function.

The paper is structured as follows: Section II presents a step-
by-step guide on the setup of our evolutionary experiments
and the choice of the robot configurations to test. A first
comparison between the different configurations based on
performance only is presented and discussed in Section III,
and a deeper analysis of the evolved behavior belonging to the
Pareto fronts is provided in Section IV. The paper is concluded
in Section V with some final remarks.

II. EVOLVING FLOCKING BEHAVIOR

In this section, we describe the design choices made for
the evolution of coordinated motion behaviors in a group of
robots. Evolutionary experiments are performed in simulation
using ARGoS, a simulator tailored for swarm robotics, which
provides high-speed and accurate simulations [19]. The sim-
ulated robots model the marXbot platform [20]. These robots
are equipped with a belt of evenly distributed RGB LEDs
that allow signaling with different colors, and that can be

perceived by the onboard omni-directional camera. We exploit
the marXbot LEDs to define several robot configurations that
can provide the required information for coordinated motion,
as described in Section II-A. We complete the description
about the evolutionary setup presenting the full sensory-motor
configuration of the robots (Section II-B), the controller and
the genotype-to-phenotype mapping (Section II-C), and the
evolutionary algorithm along with the fitness function used
(Section II-D).

A. LED configuration

According to the models of self-organized flocking [14],
the relevant information needed by an individual to decide its
action consists of the distance, the bearing and the heading
of close neighbors. To convey such information we use the
RGB LEDs around the robots, which allow to display various
colored patterns. In our experiments, the chosen pattern will
be always displayed to allow neighboring robots to detect each
other, and possibly to obtain all the information required for
moving in a coordinated way. To investigate the influence of a
robot configuration on the evolved behavior, we test different
LED configurations. In total there are 12 LEDs all around the
robot circular body, each configurable to display any color
in an 8-bit RGB spectrum (see the figure in Table I). We
decided to restrict the number of colors to red and blue,
because each color corresponds to additional inputs to the
robot controllers, as detailed below. In the whole, for each
of the 12 LEDs, we have 3 possible states—red (R), blue (B)
and off (0)—that correspond to 312 possible configurations.
We selected a subset of configurations that intuitively convey
information about the robot heading, which is crucial for
effective coordinated motion. We defined both left-right and
front-rear colored patterns, and we vary the number of LEDs
used. Additionally, we also run two control experiments with
“naive” LED configurations: the one with all LEDs off, and
the other with all LEDs in the same state (B), therefore not
conveying any heading information. As shown in Table I, in
total we have 10 different configurations that can be grouped
in three categories: the naive (1-2), the left-right (3-6) and
the front-rear (7-10). The first configuration is only meant for
testing if adding LEDs truly have an effect on performance,
while the second one should determine if adding heading
information is beneficial. The other two categories include
setups with different number of LEDs turned on (respectively
1, 2, 4 and 6 LEDs). For the sake of simplicity, we considered
only symmetric configurations.

B. Sensory-motor System

Each robot is equipped with a minimal set of sensors and
actuators, which is considered sufficient for displaying a flock-
ing behavior. The selected LEDs in the robot configuration
are always on, and can be perceived by the omnidirectional
camera up to the distance of 1 meter. The image is processed to
extract a list of i = 1, . . . , N red/blue color blobs c ∈ {r, b}
with their distance ρc,i and angle θc,i, resulting in a vector
vc,i(ρc,i, θc,i) for each detected blob (in polar coordinates).



TABLE I
WE TESTED 10 DIFFERENT LED CONFIGURATIONS, EACH DEFINED BY A
CHARACTER ARRAY IN WHICH THE ith ELEMENT REFERS TO THE STATE
OF LED i, POSITIONS ARE AS INDICATED IN THE FIGURE ON THE RIGHT.

No. Configuration Description
1 000000000000 All LEDs are turned off
2 BBBBBBBBBBBB All LEDs are turned blue
3 00B00000R000

1-6 LEDs indicating left
and right side

4 00BB0000RR00
5 0BBBB00RRRR0
6 BBBBBBRRRRRR
7 R00000B00000

1-6 LEDs indicating front
and rear side

8 R0000BB0000R
9 RR00BBBB00RR

10 RRRBBBBBBRRR

Additionally, each robot is equipped with 24 infra-red prox-
imity sensors evenly distributed along the circumference of
the robot’s body. The typical range of these sensors is around
4-5 cm. Each sensor i provides a scalar value Pi inversely
proportional to the distance of the object. For each sensor, we
build a 2-dimensional vector vp,i(ρi, θi) in polar coordinates,
where ρi = Pi and θi corresponds to the sensor bearing.
Measurement uncertainty is modeled by uniform noise within
5% of the input range.

Directly feeding the values obtained by the sensors would
be straightforward, but would also present a huge search
space for our evolutionary approach (24 proximity values + N
colored blob values). Thus, some form of input preprocessing
is necessary. To this purpose, we compute a single resultant
vector for red blobs, for blue blobs and for the proximity
sensors:

Vk =
∑
i

vk,i, k = r, b, p. (1)

Then, we rescale the vector length to be within the range [0, 1]
by exploiting a sigmoid normalization:

V̂k =
Vk

|Vk|
2

1 + e−β|Vk|
− 1, (2)

where β = 2 is a normalization parameter. Finally, we consider
the projection along M = 6 equally distributed axes, by
computing the scalar product:

Ik,m = V̂k ·Vm, m = 1, . . . ,M, (3)

where Vm is the versor in the direction (2m − 1)π/M . In
this way, we reduce the total number of scalar inputs to a
more manageable size without significant loss of information.
These values are then going to be fed to the robot’s control
software.2 On the actuators side, given that LEDs are always
kept in their state, the controller only commands the motors
of the left and right wheels, which can linearly vary in the
range [−ωM , ωM ], where ωM is the maximum angular speed
of the wheels (ωM ≈ 4.5s−1).

2Note that the heading information encoded in the LEDs color pattern (if
any) is implicit. The available information is only given by the color vectors,
and no assumption is made on how the neural controller should make use of
it.

C. Genotype-to-phenotype mapping

All robots are completely identical both in body and control
software (we use a homogeneous group). Therefore, we map
the genotype to one single control structure that is cloned
and instantiated separately for each robot. We employ a fully-
connected feed-forward neural network without hidden layers.
The neural network has 18 sensory inputs and 2 motor outputs.
At each step the sensory neurons act as simple relays, while
the output of the motor neurons is calculated as follows:

Oj = σ

(∑
i

wijIi + βj

)
, σ(z) =

1

1 + e−z
(4)

where Ii is the activation of the ith input unit, βj is the bias
term, Oj is the activation of the jth output unit, wij is the
weight of the connection between the input neuron i and the
output neuron j, and σ(z) is the sigmoid function. The first 6
input neurons receive the input from proximity sensors: Im =
Ip,m. Neurons in the range [7, 12] and [13, 18] receive the data
corresponding to the red and blue vectors: Im+6 = Ir,m and
Im+12 = Ib,m. Finally, the output of the two motor neurons
is scaled onto the range [−ωM ,+ωM ] and used to control
the speed of the wheels. The bias terms and the connection
weights of the network are genetically encoded parameters.
Therefore, we have a direct encoding, meaning there exists a
bijective function that relates the genotype to the phenotype.

D. Evolutionary algorithm and fitness function

In our experiments, we used a simple multi-objective evo-
lutionary algorithm that operates on a population of 100
randomly generated genotypes. Each genotype contains the
parameters of the control software of each robot as a vector
of floating-point genes varying in the range [−5, 5]. After
the evaluation of the performance of each individual of the
population, the new population is created using a combination
of elitism and mutation. In particular, the population is ranked
according to the hypervolume metric [18] and the best 25
individuals are selected for reproduction: all individuals are
retained unchanged in the next generation, while the rest of
the population is generated by applying a mutation operator to
copies of the elite individuals. Mutation is applied by adding to
each gene a random value drawn from a normal distribution
N(0,1), and trimming the value to keep it within the range
[−5, 5]. The algorithm runs for a total of 200 generations.

Due to the fact that random initial conditions have an effect
on the immediate performance of a candidate, each genotype
is evaluated in 10 trials and the average performance over
these trials is used to assess its fitness values. Each trial lasts
T = 120 seconds corresponding to 1200 simulation steps.
Initially, all robots are placed randomly within a circle with
a diameter of 2 meters. Robots are rewarded for displaying
coordinated motion, that is, they have to move as far as
possible from the initial position while maintaining group
cohesion. As a consequence, we defined a bi-objective function
based on the following criteria: cohesion and motion. Cohesion



is maximized when the average distance between the robots
and the geometric center of the group is minimized:

C = max

(
0, 1− 1

N

∑
i

|Xi(T )− X̂(T )|
dm

)
, (5)

where N is the number of robots, Xi is the position of
robot i, X̂ the one of the group center of mass, and dm is a
normalization factor. Motion is computed as the total distance
covered by the geometric center of the group:

M =
|X̂(T )− X̂(0)|

Dm(T )
(6)

where Dm(T ) is the maximum distance a single robot can
travel in T seconds.

III. EVALUATING LED CONFIGURATION

We performed 20 independent evolutionary runs for each
configuration, each starting with different randomly generated
populations. At the end of each evolutionary run, a post-
evaluation procedure is employed where all candidates in
the last generation are evaluated 300 times. To ensure a
fair comparison between the different configurations, we use
the same set of random seeds to initialize the evolutionary
runs and to perform the post-evaluation. We exploit the
Pareto-optimality relations to compare the results obtained
with different configurations. In the simplest case, when one
experimental condition is always dominated by another one
(according to the /-relation [21]), we can say that the latter
gives a better approximation to the Pareto-optimal set. If such
clear advantage cannot be determined, we can make use of
attainment functions to extract information on the quality
of different configurations [22]. The attainment function is
associated to a given experimental condition, and it indicates
the probability of a given point attaining (i.e., dominating
or being equal) in the objective space. It thus characterizes
statistically the output of a given experimental condition. Since
this function is practically unknown, we approximate it using
the simulation results (in particular, the obtained Pareto fronts
of the 20 evolutionary runs we performed for each setup)
obtaining the empirical attainment function (EAF) [23]. Once
obtained the EAF for each condition, we can compute the
difference between conditions to compare the relative quality
of their output (see Figure 1 for an example). On this basis,
we can comparatively analyze the effects of different robot
configurations.

A. Naive configurations

The “naive” control conditions have been designed to make
sure that robots can actually learn to profit from the extra
information obtained by the use of LEDs and camera. Indeed,
we could not rule out a priori the possibility that coordi-
nated motion could be effectively performed exploiting the IR
sensors only, or without heading information. Therefore, we
initially test the 000000000000 and the BBBBBBBBBBBB
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Fig. 1. Comparing naive configurations through empirical attainment func-
tions (EAF). Left-side and right-side indicate the differential advantage of
the 000000000000 and the BBBBBBBBBBBB configurations, respectively.
Gray levels indicate the magnitude of the difference between the two setups:
the darker the color, the larger the difference. For instance, a black point on
the right indicates that the right-side condition attains that point in at least
80% more runs. Solid lines indicate the best and the worst surfaces, while the
dashed line indicates the median. In this case, we observe a large advantage
for the BBBBBBBBBBBB configuration.

configurations, which provide similar information about dis-
tance and bearing of close neighbors, the latter featuring a
longer range thanks to the visual information from the camera.

As expected, the comparison of the obtained results for
the two conditions shows that robots exploiting long-range
visual information significantly perform better (see Figure 1),
by systematically attaining higher values in both motion and
cohesion. After investigating the evolved behaviors, we ob-
serve that no true coordinated motion has been achieved, as
also suggested by the low motion performance of the attained
points in the objective space. The increased performance with
respect to the 000000000000 configuration can be definitely
credited to the increased sensing range of the camera although
it only helps the group to maintain coherence, which is not
easily feasible on the basis of IR information only. We there-
fore obtain a confirmation that a suitable LED configuration is
necessary for coordinated motion, and also that it must provide
some information about the heading of the robots in order to
obtain a good performance.

B. Left-right configurations

Left-right configurations are probably the most natural way
of indicating the direction of a moving object, as this type of
signaling is quite frequent in technical systems (e.g., visual
signs of boats). However, choosing the right configuration for
efficient coordinated motion with the marXbot robots remains
a question. To find out how many LEDs should be turned on,
and in what position, we ran tests with 1, 2, 4 and 6 LEDs,
with different color on each side of the robot. Figure 2 shows
a comparison of the tested configurations.

First, we compare the results of the uniform configuration
(BBBBBBBBBBBB) with a left-right configuration exploiting
the same number of LEDs (BBBBBBRRRRRR). The heading
information provided by the latter can be actually exploited
for better coordinated motion, as the difference between the
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Fig. 2. Comparison among left-right configurations. The top graph compares
the uniform configuration (BBBBBBBBBBBB) with a left-right configuration
featuring an equivalent number of LEDs on (BBBBBBRRRRRR). The other
graphs compare left-right configurations with decreasing number of LEDs.
Setups with less LEDs perform better (see text for details).

EAFs indicates (see top graph in Figure 2). If we consider
cohesion only, the two setups are equivalent, but the left-right
configuration definitely outperforms the uniform one as soon
as motion is taken into account.
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Fig. 3. Comparison among front-rear configurations (see text for details).

The comparison between different left-right configurations
is performed for decreasing number of LEDs. We find that
there is a inverse relationship between the number of LEDs
used and the performance (see the second, third and fourth
graph in Figure 2). Plus, this advantage appears at every part
of the objective space, excluding only a small portion in which
solely cohesion is maximized. We also note that the lower the



number of LEDs, the more the difference fades. A possible
explanation for the advantage of less LEDs lies in our encoding
of the visual data. The encoding presented in Section II-B
might give less distinguishable information when two detected
robots are very close. This is a counter-intuitive result as one
would expect that the more information is available through
LED signals, the better the quality of the coordinated motion
behavior. Instead, minimal configurations seem to provide a
selective advantage over the entire objective space. Apart from
this, the results demonstrate that there is a strong influence of
the configuration on the performance of the system.

C. Front-rear configurations

It is also possible to deduct the heading information from
front-rear markers, as it is done for cars. Indeed, evolved
strategies may exploit front-rear markers to obtain a coherent
orientation of the group, which is the basics for coordinated
motion. Therefore, we performed the same simulations as
presented above with different number of LEDs used to signal
the front and the rear of a robot. The comparison among the
different configurations can be seen in Figure 3.

Also in this case, the comparison with the uniform configu-
ration shows that front-rear markers can be actually exploited
for coordinated motion. When comparing among different
front-rear configurations, we note that it is not possible to
draw a strong order of performance among them. While it
is clear that the setup with 6 LEDs is strictly dominated by
configurations with less LEDs, we note no clear difference
between configuration with 4 and 2 LEDs and a differential
advantage in separate zones of the objective space between
configuration with 2 and 1 LEDs. Therefore, differently from
the left-right configurations, front-rear markers appears to be
exploited in a similar way despite their number.

D. Comparison between different configuration categories

We finally propose a comparison between left-right and
front-rear configurations, performed among setups featuring
the same number of used LEDs (e.g., 00BB0000RR00 vs.
R0000BB0000R). In the case with 6 LEDs, the front-rear
configuration demonstrates better performance in covering the
objective space (see the top graph in Figure 4). As we decrease
the number of used LEDs, the situation changes in favor
of the left-right configuration, which starts to dominate in
the top part of the objective space, where more and more
solutions featuring high cohesion and good motion are found.
As shown by the various graphs in Figure 4, the front-rear
configurations keep an advantage in the areas of the objective
space characterized by high motion but low cohesion. Thus,
without further analysis it is impossible to determine the best
configuration.

IV. CLASSIFICATION OF THE OBTAINED SOLUTIONS

Despite the usage of relatively simple configurations, we
were unable to conclusively determine the best setup. Indeed,
the average values of motion and cohesion alone do not
indicate what kind of behavior the group is displaying. For

if Q3(K) > 1 then
return Disperse

end
if Q3(M) ≤ Da then

return Aggregation
end
if Q1(C) > Dc then

return Flocking
end
if Q2(Θ) ≤ π

4 then
return Train

end
return Wavefront

Algorithm 1: Procedure for classification of different behav-
iors (see text for details).

this reason, it is necessary to observe the evolved behaviors
and identify their characteristics in relationship to the area
occupied in the objective space. By thorough analysis of the
evolved behaviors on the entire Pareto front, we observed the
following prototypes of group motion3:

Stationary: robots stay close to each other, showing minimal
or no group motion.

Disperse: robots spread around with almost no cohesion.
Wavefront: robots move together forming a single-width arc.
Train: robots align and follow each other one by one like

wagons of a train.
Flocking: robots show a healthy mix of cohesion and motion

by displaying true flocking.

To objectively classify each solution into one of the above
listed behaviors we defined a set of suitable metrics and a clas-
sification procedure. Besides motion and cohesion measures,
we compute the following metrics at the end of each trial.

• The number of connected components K in a graph
where each node corresponds to a position of a robot
and an edge exists if and only if the distance between
the robots is less than the maximum visual range. This
measure serves to understand if the group splits in sub-
groups moving in different directions.

• The angle Θ between the average direction of motion of
the group and the main axis of the group given by the
position of the two robots that are farthest away from
each other. This allows to distinguish between trains and
wavefronts.

We performed 50 trials for every non-dominated solution of
each configuration to obtain a reliable classification, and on
the basis of this sample, we ran the classification procedure
shown in algorithm 1. We first classify as “disperse” those
behaviors in which the group splits into two or more smaller
groups more than 25% of the time. This is measured as
Q3(K) > 1, where Q3(K) is the third quartile of the number

3A video of the observed behaviors is available at http://www.youtube.com/
watch?v=DMTajtJasTs

http://www.youtube.com/watch?v=DMTajtJasTs
http://www.youtube.com/watch?v=DMTajtJasTs
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Fig. 4. Comparison of the left-right and front-rear configurations (see text
for details).

of connected components.4 Then, we identify the solutions
belonging to the class “stationary”, which exhibit very low
motion values. We classify as “stationary” those behaviors

4The rest of the classification is performed discarding those trials in which
the group splits (which are anyway a minority), in order to avoid incorrect
classifications.

that have Q3(M) ≤ Da, where Q3(M) is the first quartile
of the motion samples and Da = 0.25 is an empirically
selected threshold below which no significant motion of the
group is observable. By using the third quartile we encompass
in the class those behaviors that aggregate at least in 75%
of the trials. At this point, we have removed all cases that
do not present a good coordinated motion behavior. We then
classify as “flocking” those behaviors that do not present an
elongated shape, determined as Q1(C) > Dc, where Q1(C)
is the first quartile of the cohesion samples and Dc = 0.8 is
an empirically determined threshold. This class encompasses
behaviors in which the group presents high values of cohesion
in at least 75% of the trials. Finally, we distinguish between
“train” and “wavefront” on the basis of the angle Θ, which
indicates whether the main axis of the group is close to the
average direction of motion of the group (train) or orthogonal
to it (wavefront). We therefore look at the median value Q2(Θ)
and classify the behavior as “train” in case it is lower than π/4,
and as “wavefront” otherwise.

Table II shows the behavior classification of every setup.
We notice that left-right configurations do not produce
“trains”, and conversely front-rear configurations do not pro-
duce “wavefronts”. Therefore, the LEDs configuration strongly
determines the quality of behaviors that can be evolved.
Moreover, we also notice that left-right configurations present
an higher percentage of “flocking” behaviors, the lower the
number of LEDs, the higher the probability to observe flock-
ing. Therefore, the 00B00000R000 configuration seems to
be the best one if flocking is the desired outcome.

Finally, we mapped the classification of behaviors over
the corresponding points in the objective space, and we
aggregate all solutions respectively for left-right and front-
rear configurations (see Figure 5). It is possible to observe
that different classes are rather separated on the objective
space, with flocking behaviors occupying the area with high
cohesion and variable motion. We also observe that “train”
and “wavefronts” are specialized solutions, and that they are
less clustered in the objective space, indicating a wide range
of possibilities of displaying these behaviors in the different
configurations. If we compare Figure 5 with Figure 4, we can
understand how the ability to produce more flocking behaviors
gives a performance advantage to the left-right configuration,
while the front-rear configurations dominate mainly thanks
to behavior in the “train” or “disperse” categories, which
correspond to larger motion values. Again, from this analysis
the left-right configuration results in better performance.

V. CONCLUSIONS AND FUTURE WORK

We have shown the importance of the robot configuration
on the ability to evolve efficient coordinated motion behaviors
in a swarm of robots. Our results indicate that the selection
of the robot configuration can determine the success or the
failure of the evolutionary experiment. This raises the need of
well-assessed methodologies to guide the experimenter in the
choice of the robot configuration. In this respect, we envisage



TABLE II
DETAILED CLASSIFICATION RESULTS FOR EACH CONFIGURATION.

Configuration Stationary Disperse Train Wavefront Flocking
# % # % # % # % # %

3 00B00000R000 128 47,8% 45 16,8% 0 0,0% 1 0,4% 94 35,1%
4 00BB0000RR00 135 50,4% 50 18,7% 0 0,0% 4 1,5% 64 23,9%
5 0BBBB00RRRR0 155 57,8% 70 26,1% 0 0,0% 11 4,1% 41 15,3%
6 BBBBBBRRRRRR 211 78.7% 116 43,3% 0 0,0% 5 1,9% 11 4,1%
7 R00000B00000 200 74,6% 60 22,4% 41 15,3% 0 0,0% 32 11,9%
8 R0000BB0000R 180 67,2% 44 16,4% 90 33,6% 0 0,0% 20 7,5%
9 RR00BBBB00RR 168 62,7% 50 18,7% 122 45,5% 0 0,0% 15 5,6%

10 RRRBBBBBBRRR 185 69,0% 85 31,7% 82 30,6% 0 0,0% 8 3,0%

in future work the usage of automated methodologies. For in-
stance, the robot configuration could be put under evolutionary
pressure (i.e., as an additional objective in a multi-objective
setup). However, suitable encoding must be devised to ensure
the co-evolvability of configuration and behavior.
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