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Abstract In this paper, we present an OpenCL implementation of a biologically
sound spiking neural network with two goals in mind: First, applied neural dy-
namics should be accurate enough for bio-inspired training methods, thus resultant
network data is reproducible in "in vitro" experiments. The second is that the imple-
mentation produces code that runs adequately on up-to-date embedded graphical
chips for fast on-board classification applications, e.g., video image processing. We
describe the necessary steps required to implement an efficient algorithm using the
OpenCL framework and present evaluation results of the execution time compared
to traditional serial CPU code. We show that an optimized GPU kernel code can
perform sufficiently fast to be used for future embedded neural processing.

1 Introduction

Artificial neural networks (ANNs) are general function approximators and are noise re-
sistant, and are therefore popular in many classification applications. Spiking neural net-
works (SNNs) are a type of ANN where communication between neurons occurs by
means of time-stamped events (spikes). Researchers in the field of computational intelli-
gence have shown that biologically sound spiking neural networks (SNNs) are compara-
ble, but more powerful than traditional artificial neural networks [1], [2]. SNNs have been
applied to many areas like epilepsy and seizure detection [3], robot navigation [4] and
image processing [5]. Such neural networks are usually computationally complex and
often require high performance computers (or even supercomputers) to run. They are,
however, inherently parallel processes and therefore implementations on cheap and easy
available GPUs are advantageous. In [6], the authors showed the feasibility of running
different simple spiking neural network models on GPUs, but concentrated on the archi-
tecture comparison. The authors of [7] implemented a SNN using CUDA [8] and showed
its real-time capabilities. However, this implementation and others (e.g., [9], [10], [11])
rely on the most basic integrate-and-fire SNN models or their variations. The model is
easy to implement, however it is neither accurate nor biologically-sound.

The goal of applying more complex models of neural dynamics is to provide a testbed
that is suitable for evaluating advanced bio-inspired training algorithms that can also



be verified by in vitro experiments. Such a neural testbed running on novel embedded
graphical chips could open up new possibilities, not only for researchers with limited
access to high-speed computer clusters, but also for the development of smart devices
performing real-time classification tasks.

In this paper, we present the first steps of the implementation of a very large, biolog-
ically plausible, SNN, based on the spike response model (SRM)[12], which is accurate
and trainable. Our implementations rely on OpenCL for embedded chips that support
OpenCL specifications [13], which allows for portability among a wide range of GPU
types from different vendors. Results show that an OpenCL application running on a
GPU can easily outperform single and multi-core CPUs. One challenge is that the bio-
logically sound SNN models are memory-intense and GPUs provide a limited memory
bandwidth, which is usually circumvented by simplified implementations [14]. We are
facing this challenge by introducing a local connection scheme with a constant number
of synapses per neuron. This fact can also be exploited to optimize the memory man-
agement of the OpenCL application, which resulted in a further significant increase in
speed.

The paper is structured as follows: Section 2 describes the spiking neural model we
used in our simulations, while Section 3 gives a brief introduction on general-purpose
computing on GPUs with OpenCL. Afterwards, Section 4 presents the particular steps
we took to implement and optimize the algorithm to achieve best performance, which is
explored in Section 5. Finally, we conclude the paper in Section 6.

2 Spiking Neural Network Model

Spiking neural networks offer various advantages over traditional sigmoidal artificial
neural networks. They are not only biologically plausible but they can potentially re-
produce the computational dynamics observed in a biological brain. SNNs are designed
to be phenomenological models of biological neurons; reflecting natural action-potential
generation, post-synaptic potential shaping, and refractory periods.

In the case of ANNs information processing happens in a much simpler manner:
an iterative series of calculations based on neuron outputs and layers. In an SNN, neu-
rons emit pulses or spikes through their synapses whenever their membrane potential ϑi
reaches its threshold value. This happens due to incoming spikes from other presynap-
tic neurons. Each spike has an amplitude of 100 mV and lasts approximately 1-2 ms.
Since all the spikes in the network have the exact same form, information is encoded in
the chronological order of the spikes, or the so-called spike train. In our model, spikes
are represented by the Dirac delta function, δ(t − tki ), which is a singularity function
occurring at time t = tki , where k is the spike index in the train and i is the neuron index.

2.1 Spike Response Model

Related work indicates that there are numerous ways to model a spiking neural network,
but most of them are overly simple, neglecting several aspects of neural dynamics (burst-
ing, inhibitory rebound and shunting inhibition [15]). The model presented in this paper
is based on the Spike Response Model (SRM) model described in [12]. Both models



provide networks that are mathematically tractable and trainable. Moreover, they both
approximate the Hogkin-Huxley model with a high degree of accuracy [16].

The major difference between earlier models and the SRM is that neurons are not
binary: they keep track of past spikes as exponentially decaying functions. Although the
SRM is also considered a generalization of the leaky integrate-and-fire model [16] it
expresses the membrane potential ui of neuron i with the following integral instead of a
differential equation:

ui(t) = η(t− t̂i) +
∑
j

wij
∑
k

εij(t− t̂i, t− tkk)

+

∫ ∞
0

λ(t− t̂i, τ)I(t− τ)dτ

(1)

where t − t̂i represents the time that has passed since last firing of neuron i, while
the η(), ε() and λ() functions describe the dynamic behavior of this neuron. wij is the
weight of the synapse between neuron i and j. The function I() determines the resting
potential expressed by the integral (1) and is set to a small random signal.

The refractory response function, η(), describes the positive pulse and afterpotential
subsequent to each firing of a neuron. This is intended to model the hyperpolarization
phase and is expressed as an exponential decay function:

η(x) = −η0e−x/τfH(x) (2)

where η0 and τf are scaling constants and H(x) is the Heaviside function.
The postsynaptic potential function, ε(), formulates the change of membrane po-

tential evoked by the reception of a pulse from a presynaptic neuron. It is obtained by
mapping integrate-and-fire neurons to the SRM and modeled with exponential decay:

ε(x, y) =
e−t/τs

τs

∫ x

0

e−τ(1/τm−1/τs)H(t− τ)dτ (3)

where τm and τs are scaling constants of the exponential function.
The linear response function λ() captures the change of the membrane potential to

an impulse current input, which decays exponentially after the firing of a neuron. It is
also expressed as a decaying exponential:

λ(x, τ) =
R

τm
[1− e−x/τr ]e−τ/τmH(τ)H(x− τ) (4)

where τm, τr >> τf are the recovery time constants and R is the recovery factor that
scales the magnitude of the postsynaptic potential in accordance to the amount of time
elapsed since the neuron’s last firing event.

In traditional neural networks and also in the integrate-and-fire models, each neuron
has the same constant threshold value. However, in the SRM each neuron is characterized
by its own dynamic threshold value ϑi. Whenever a neuron enters the refractory period,
Tf the normal threshold jumps to approximately 100mV, preventing the neuron firing
again. After Tf the threshold quickly decreases back to its normal value (eq. 5).

ϑ(t− t̂i) =

{
ϑf 0 < t− t̂i
ϑ0[1− e−(t−t̂i−Tf )/τϑ ] t− t̂i ≥ Tf

(5)



Figure 1: Changes to the membrane potential and threshold due to incoming spikes

Figure 1 illustrates the changes to the neuron’s membrane potential and threshold
due to incoming pulses. Individual pulses increase the membrane potential for a short
time period. Once the threshold has been reached, the neuron fires by emitting a near
instantaneous pulse and enters a refractory period. This effect also increases the threshold
to prevent the neuron from firing in the next short time period.

3 OpenCL Architecture

GPUs were originally built to enhance graphical game experience, but were soon adopted
by researchers to exploit their performance for parallel tasks in other domains. OpenCL
is a framework developed by the Khronos Group4 for writing programs that can be ex-
ecuted across heterogeneous platforms, including CPUs, GPUs or dedicated hardware
accelerators. In particular, we have chosen OpenCL because of its support for different
operating systems and graphics card vendors. OpenCL applications can be also executed
hardware without GPU support. It is further expected to be possible to use OpenCL on
a wide range existing and future embedded devices such as smartphones, tablets, and
embedded control systems.

In comparison with CUDA, which is more directly connected to the execution plat-
form (which needs to support Nvidia’s PTX instruction set to run CUDA), OpenCL
shows comparable performance given that the same optimizations are implemented as
in the CUDA implementation [17,18]. While CUDA is limited to Nvidia GPUs, it is
notable that a CUDA kernel can be converted to an OpenCL kernel with minimal modi-
fications [17].

OpenCL includes a language that is based on the C99 standard [19] and a set of
application programming interfaces for writing individual processing threads (kernels)
especially meant for data-parallel and task-parallel applications. Tasks are executed on a
host that forwards the application to the execution devices (i.e., CPU or GPU). It divides
the program into so called work-items that will be executed in parallel. If the number

4 http://khronos.org/opencl



of work-items is higher than the processing capability of the platform, then they will be
grouped into several work-groups, where synchronization between them will take place
during runtime.

An important part of OpenCL is the memory model as shown in Figure 2. It adopts
the device’s model, where the global memory refers to the main memory of the device but
it can also be shared with the host. The global memory is the largest but slowest memory,
especially if shared with the host system. Work-items belonging to the same work-group
can access a shared local memory that provides much faster read/write operations. This
memory is mainly used to synchronize work-items in a group and has a maximum size
of 16kB. Finally, each of the work-items has a private memory space, which is a register-
type memory. Simply put, the local memory is faster than the global memory, and the
private memory is faster than the local memory. Although implementing a parallel al-
gorithm is in general not complicated with OpenCL, understanding the memory model
could help in improving the execution time of the program as shown in the next section.

Figure 2: OpenCL memory model

4 SNN Implementation with OpenCL

Related implementations of spiking neural networks meant for parallel executions are
mostly event-based simulations [10], however, the integrating nature of the spike re-
sponse model requires a simulation of discrete time steps, thus we choose a step length
of 1 ms. In order to calculate the membrane potential of a neuron at any time step we
need to keep track of the time steps elapsed since its last firing, its threshold and the
weights of all connecting synapses. Moreover, the membrane potential of every neuron
also has to be stored for analytical purposes. The time steps were stored as 32-bit inte-
ger values, while the membrane potential, the threshold and the weights were defined as
32-bit floating point values.

For best performance, it is advised to store all state variables and weights directly on
the OpenCL device for fast read/write access. Therefore, before starting the simulation
the initial values of these variables and the weights must be allocated, initialized and
transferred to the device’s global memory which can be then accessed in runtime. As



explained in Section 3, the device’s global memory has a high access time and a very
limited size.

A fully-connected neural network requires to store one floating point value for every
n(n−1)/2 connections, which is impracticable for larger network sizes in terms of mem-
ory usage, training and execution times. To make the neural network scalable for high
numbers of nodes, we will use a partially-connected neural network where each neuron
has a fixed number of connections to its immediate neighbors (e.g., for a neighborhood
radius of 5 this yields 124 connections per neuron). This way, the memory requirements
grow only linearly with the number neurons (instead of quadratically).

Initially, we created two different kernel programs: An update kernel and a threshold
kernel. The first is used to update the neuron’s membrane potential according to Equa-
tion 1, while the second handles the firing if the membrane potential is higher than the
neuron’s threshold. Thus, one time step of the simulation consists of the execution of
the first kernel on each neuron, followed by the second kernel executed on every neuron.
The reason for this divided architecture is to provide a general execution model that is
not influenced by the connection topology of the neural network.

5 Simulation and Experiences

Figure 3: Example network structure with N ×N ×N neurons

With an example application idea in mind to process sequences of images we created
an N ×N ×N grid network structure where each neuron is only connected to the local
Moore neighborhood of range 2, thus having maximum 53 − 1 = 124 synapses based
on how far it is situated from the edges. The computational effort depends mainly on the



total number of neurons and the connections per neuron. Our approach is not limited to
cubic dimensions. Depending on the type of application it is also possible to have a larger
image with fewer layers (for example 640 pixels x 480 pixels x 3 layers) with the same
performance regarding frames per second. Neurons on the frontal face of the grid were
used as inputs and selected neurons on the backface were used as outputs (see Figure 3).
For the sample input data we used 8-bit grayscale images obtained for the built-in camera
in order to have the source already on the graphics card’s memory in an OpenGL context
that can be directly accessed by OpenCL kernels.

For the evaluation of the presented approach, we tested two different algorithms with
a structure size being betweenN = 10...100 by measuring the execution time required to
perform one step of simulation. All of our experiments were performed using an AMD
ATI Mobility Radeon HD 5750 graphics card that is in performance comparable to an
up-to-date embedded GPU with OpenCL support.

5.1 Initial naive algorithm

Based on the implementation described above, we created a naive implementation with
the state variables and the two different kernels programmed in OpenCL. For comparison,
we also implemented a native C++ version of the same code that was executed on a single
thread.

We executed the program 100 times with each setup and measured the time required
to compute one time step of the simulation. As shown in Figure 5, the execution time for
the CPU code increased rapidly with size of the network.

We compared the performance of the OpenCL implementation to the same applica-
tion running on a single core CPU. This served as a measure to tell us how many times
faster the approach is than the single CPU solution. In practice, an implementation on a
state-of-the-art microprocessor might also provide parallel processing via multiple cores.
However, for an embedded system, the parallelization would be still limited to a reatively
low number of cores. In the best case, such a multi-core system would be faster by a fac-
tor equal to the number of cores.

We measured a significant speed performance improvement of a factor of at least 50
over a single-core CPU for all input sets with more than 40× 40× 40 neurons. Realistic
input sets are expected to have at least this size or be even larger. Thus, in comparison
to CPU code, our OpenCL implementation performed exceptionally fast, even with one
million neurons one step took only 126 ms on average.

Figure 4: Data-flow model of the first algorithm



Figure 5: Execution time of one time step of serial CPU and OpenCL implementation
with different network size

5.2 Optimized algorithm

If we analyze the data flow of the previous algorithm, we observe that in each time step
both kernels were required to read and write data directly from the global memory. In
general, this operation is time-wise the most expensive. A more effective approach would
be to utilize the local memory block available for kernels being in the same work-group
that provides significantly faster read/write access.
As explained in Section 3, OpenCL instructs the target device to execute the parallel
work items in groups, which in our case form a K ×K ×K grid layout. By exploiting
the fact, that neurons are only connected in a local neighborhood, the program of each
neuron could share its own data, which is already loaded from the global memory, via
the shared local memory. By making this transition from exclusive read/write on global
data to a locally shared architecture we could theoretically improve the performance of
the algorithm (see Figure 4).
Furthermore, since the membrane potential of each neuron only depends on locally con-
nected neurons there is no need to wait a whole execution cycle of the update kernel
before running the threshold kernel. Instead the two kernels can be merged saving ad-
ditional time on memory access. By running the same simulation as written above, we
obtained lower execution times (depicted in Figure 6). We achieved an increase of speed
of approximately 25 %, which further increases with increased network size. Our results
also compare to similar implementations of spiking neural networks with different neural
dynamics [10].

6 Conclusions and Future Work

In this paper, we presented an OpenCL implementation of a biologically plausible spik-
ing neural network. We based our neural dynamics on the spike response model that is
evaluated in a discrete-time simulation. We compared our naive OpenCL implementa-
tion to a single-thread CPU code, as well as to an optimized version of the same code.



Figure 6: Execution time of one time step of the naive and the optimized code with dif-
ferent network size

Our results show that OpenCL provides much faster execution time, thus being a valid
platform for future embedded on-board neural processing.

In our test scenario, a network with 1000 000 neurons and approximately 124 000 000
synapses could be calculated within 93 ms with GPU support. This is sufficient for typical
low-framerate image processing scenarios. In comparison, a CPU-based implementation
was slower by several orders of magnitude.

In our future work, we plan to test and validate bio-inspired training algorithms (e.g.,
Hebbian learning) directly on the embedded hardware. Furthermore, the methodology
will be applied and verified in video image processing (e.g., activity recognition) in smart
cameras.
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