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Abstract:
This paper presents a model for supporting a production scheduling system with an artificial
hormone algorithm. The system consists of lots that have to undergo a number of processing
steps on different machines. The processing steps for a lot are formalized in a recipe assigned to
the lot type. Since the steps in the recipe have to be processed in order, the given system allows
choice only in the context of selecting a particular machine for the next step and in changing the
processing order of waiting lots at a machine. Optimization of such a job-shop scheduling system
is an NP-hard problem. In the approach proposed by this paper, artificial hormone systems are
used to express the urgency of a lot and the need for new lots at a machine type, thus providing
a system using local information for optimization. Results indicate that the artificial hormone
system provides an improvement of around 5% over a First Come-First Serve approach.

1 Introduction

The production of logic and power integrated
circuits (ICs) in the semiconductor industry is a
highly dynamic process (Geng, 2018). Unlike the
high-volume production of memory ICs, in the
logic and power sector, the wafer production has
a huge product mix, dynamic changes in the sys-
tem and a high number of processing steps and
involved machines (Khatmi et al., 2019). Weekly
workloads can involve around 105 operations on
103 machines (Teppan, 2018). Optimizing such a
system for WIP (work in progress) and flow fac-
tor is an NP-hard problem (Garey et al., 1976),
where existing dispatching rules and linear op-
timization methods cannot cope with the NP-
hard search space (Lawler et al., 1993), and thus
cannot consider the entire system behavior due
to computational complexity. Therefore, they
cannot exploit the optimization potential in job-
shop scheduling in semiconductor production sys-
tems (Khatmi et al., 2019).

To overcome this issue, we model the produc-
tion plant as a self-organizing system of agents

that interact with each other in a non-linear way.
Therefore, we aim at achieving near-optimal solu-
tions in feasible computation time. Furthermore,
such a system is also able to adapt to changes
in the environment, scale with the number of
agents, and is robust against a single point of
failure, as the actions depend on local interac-
tions (Heylighen, 2001). Moreover, local rules
and local interactions allow overcoming the huge
computing time of centrally performed linear op-
timization. One possibility for a self-organizing
approach are algorithms modeled after biological
hormone systems. Such artificial hormone sys-
tems are inspired by the biological endocrine sys-
tem that is adjusting the metabolism of tissue
cells in our body (Turing, 1952; Sobe et al., 2015).
They are part of the class of self-organizing sys-
tem with properties like scalability, adaptability,
and robustness (Prehofer and Bettstetter, 2005)
that can be used in networked technical applica-
tions to coordinate a set of complex agents inter-
acting with each other (Elmenreich et al., 2009;
Böszörmenyi et al., 2011; Sobe, 2012). Such al-
gorithms are especially of interest for such large



cyber-physical systems, as, for example, in the
semiconductor industry, where traditional control
or scheduling mechanisms are at their limit.

In this paper, we describe an artificial hor-
mone algorithm that can be applied to optimize
the processing of lots and to balance the load be-
tween machines of the same type. Section 2 de-
scribes the target system problem statement that
forms the basis to integrate an artificial hormone-
based algorithm in such a system in Section 3.
Section 4 evaluates the approach compared to
a FIFO (first-in-first-out) principle and presents
simulation results in Section 5. Finally, Section 6
presents the related work to this topic and Sec-
tion 7 concludes the paper.

2 Problem Statement

A production plant has a number of machines,
each being able to perform a specific process. Ad-
ditionally, there can be multiple instances of a
machine type. It is guaranteed that there ex-
its at least one machine for each process step.
Based on real semiconductor factories the pro-
cessing time at a machine ranges between 20 min-
utes and 2 hours. Table 1 depicts the parameters
of the system model. The notation N represents
a Normal distributed random variable, while U
represents a uniformly distributed random value.
Random values are calculated once for each in-
stance and remain unchanged for the duration of
a simulation. The processing time for each ma-
chine type will be set to the outcome of a random
variable X ∼ N (1.16, 0.32) at the beginning of
a simulation. This corresponds to a Normal dis-
tribution with 99% of values being between 0.33
and 2 hours. For a simulation, a virtual produc-
tion plant comprising a random set of machines
is generated. As it is common in the semiconduc-
tor industry, wafers are combined in groups of 25
pieces forming a so-called lot. Each lot is assigned
a unique identification number and follows a re-
spective recipe defining an ordered list of process
steps the lot has to undergo at different machines.
In our simulated problem set, lots are instantiated
according to one out of 100 recipes. Based on the
Raw Process Time (RPT) each individual lot gets
a Planned Cycle Time (PCT) that is between 2
and 10 times higher than the RPT. Half of the
machines employ batch processing, where lots are
processed in parallel batches of U(2, 8).

Table 1: Parameters used in the simulation model.
Parameter Value
Process types 100
Machines per process type U(2, 10)
Machines with batch pro-
cessing

50

Batch size U(2, 8)
Processing time per pro-
duction step

X ∼ N (1.16, 0.32)

Number of recipes (lot
types)

100

Recipe length U(90, 110)
Lots per type U(2, 10)
PCT U(2, 10)× RPT
Total number of opera-
tions

≈ 60 000

3 Artificial Hormone Algorithm

The artificial hormone algorithm is engineered
in a bottom-up approach to express the urgency
of a lot and the need for incoming lots by ma-
chines. Therefore, artificial hormones are pro-
duced at machines which can diffuse through
the production system along with the processing
steps of lots. The lots act as swarm members that
can be attracted by the hormone level of a ma-
chine. The algorithm is based upon five param-
eters, which are described with their respective
mechanisms in the following. Table 2 depicts an
ad-hoc definition of parameter values, which will
be used in first simulations. The algorithm de-
scribes the calculations and decision mechanisms
that affect the processing of lots. There are sev-
eral degrees of freedom for a particular implemen-
tation in the field. For example, the hormone-
related computing could take either at the ma-
chines or within a layer of a networked monitoring
and control system.

3.1 Hormone model

For each processing step, a corresponding hor-
mone type exists. Hormones can be at any ma-
chine, also different hormone types can be at the
same machine. Every simulation tick, hormones
degrade exponentially at a given rate α.

hormone_amount = hormone_amount · (1− α)
(1)

An evaporation rate of 0 means that hormones
do not degrade. The maximum value is 1, where
hormones degrade immediately.



3.2 Machines produce hormone to
attract lots

Each machine generates a hormone of its process
type. Machines that perform the same process
type issue the same hormone. If a machine would
be able to handle multiple process types, it would
issue, in equal parts, the respective multiple hor-
mones instead. The goal of machines is to max-
imize their working time. Therefore, a machine
would aim for pulling a sufficient number of lots
into its queue. The amount of hormone produced
by one machine is therefore calculated by

hormone_output = 1
lots_in_queue + β

, (2)

where β is a smoothing factor > 0.

3.3 Machines are linked

A machine A is upstream-linked to a machine B if
there exists a recipe that has a process of machine
B and a process of machine A in subsequent steps.
If each machine has exactly one process, the link-
ing strength from this recipe is 1, otherwise, the
link strength is 2 divided by the number of sup-
ported processes. If the same sequence appears
in other recipes, the link strength adds up.

3.4 Hormone diffuses upstream

If upstream links exist, a part γ of the hormone
at a given machine diffuses upstream:

upstream_hormone = hormone_amount · γ (3)

hormone_amount =
hormone_amount − upstream_hormone (4)
For each machine connected upstream a pro-

portional part of the upstream hormone is added:

added_hormone =

upstream_hormone link_strength∑
link_strengths , (5)

where link_strength refers to the upstream
link strength for the given hormone between the
respective machines and

∑
link_strengths refers

to the sum of all upstream link strengths for the
given hormone that emerge from the sending ma-
chine.

Table 2: Suggested algorithm parameters
Parameter Value
α .3
β 1
γ .5
δ .2
ε .8

3.5 Incoming lots diffuse Hormone

In addition to the mechanism above, incoming
lots cause a part δ of the respective hormone at
a given machine to diffuse upstream.

upstream_hormone = hormone_amount · δ (6)

hormone_amount =
hormone_amount − upstream_hormone (7)

The machine where the lot came from receives
the upstream hormone, this way a flow of lots can
self-stabilize.

added_hormone = upstream_hormone (8)

3.6 Lots are prioritized by their
timing

A lot has a base priority calculated from its re-
maining RPT and its remaining PCT:

base_priority =
remaining_RPT/remaining_PCT (9)

3.7 Lots are attracted by Hormone

The priority of a lot is modified by hormones that
are present at the machine where the lot is cur-
rently waiting

attraction =
∑
i=0

hi · εi, (10)

where hi is the hormone of the process that is
i steps ahead in the lot’s recipe. Therefore, h0 is
the hormone of the current process. ε is a factor
indicating the strength of a hormone’s influence.

The priority of a lot is then calculated with:

priority = base_priority · attraction (11)



At a machine, lots are processed based on their
priority. If a machine has batch processing, all
lots that fit are accepted for one batch.

4 Evaluation

4.1 Evaluation Environment

The simulation was constructed in a NetLogo en-
vironment. NetLogo is an agent-based modeling
software which includes the NetLogo program-
ming language and an integrated development en-
vironment (Wilensky and Rand, 2015). An agent-
based model is used to simulate the interactions
of autonomous agents while also keeping track of
the whole simulated system. Every autonomous
agent makes decisions on its own based on pre-
defined rules which later impact the outcome of
the simulation. In the case of the problem state-
ment, the agents are machines and lots. Before
the simulation can start, the parameters have to
be set. This can be achieved via the GUI in
NetLogo or, for larger quantities, with configu-
ration files. Then, the Setup function is called
to initialize the model. It uses the specified pa-
rameters or parses the given configuration files to
generate the agents. After the machines and lots
have been placed in the production plant, the lots
are introduced into production as shown in Fig-
ure 1. In it the machines are shown as squares,
batch machines are being visualized with addi-
tional lines. The lots are numbered based on their
product type and the most recent path they took
is marked with a line.

4.2 NetLogo Model

After the initialization of all entities is finished,
the production starts. A production step runs as
follows: Every lot moves to the queue of the pro-
duction type specified in its recipe. It only does
so if it is currently not being processed by a ma-
chine. The algorithm then updates the hormones
and sorts the queues based on the priority of the
lots as described in Section 3. Listing 1 shows a
simplified version of the step function and List-
ing 2 and 3 outline two exemplary hormone func-
tions.

Listing 1: NetLogo process step
to step

ask lots [

if not processing? [ move−to−queue ]
]
ask machines [
produce−hormones self
decay−hormones self

]
sort−queues
ask machines [
pick−lots−from−queue
do−processing

]
end

Listing 2: NetLogo hormone production function.
to produce−hormones [ m ]

let q (item ([m.machine_type] of machine
m − 1) queue_list)

let q_len length [q.lotlist] of q
ask machine m [ set m.hormone_amount

m.hormone_amount + (1 / ( q_len +
BETA)) ]

end

Listing 3: NetLogo hormone decay function.
to decay−hormones [ m ]

ask machine m [ set m.hormone_amount
m.hormone_amount ∗ (1 − ALPHA) ]

end

After the calculations are done, the machines
pick the lots with the highest priority from their
queue to be processed. When a lot finishes its
recipe it leaves the production plant and writes
its ProductionT ime, RPT and PCT to a file.
This sequence is repeated until there are no more
lots left in the production plant.

Figure 1: Screenshot from the Netlogo simulation:
After initialization the lots start being processed and
move to the queues specified in their recipes.



4.3 Headless Implementation

Using the technique specified above it is possible
to gather large amounts of data by running mul-
tiple instances of the simulation simultaneously
without a GUI in headless mode. The headless
controller software was written in Python using
the NL4Py package1. This package was chosen
instead of other NetLogo controller software or
the NetLogo BehaviourSpace because the algo-
rithm has a very high time complexity and as
soon as it gets to simulating larger quantities of
machines, lots, etc. there is a significant improve-
ment in performance. Through the threading
module multiple simulations can be executed at
the same time. The Python code was augmented
with an automated configuration file generator.
It creates new files for each simulation run using
randomly chosen values within the limits specified
in Table 3. Listing 4 shows an example workspace
for multi-threading.

Listing 4: Python headless workspace.
def start_workspace ( c on f i g_ f i l e ,

parameters ) :
workspace = nl4py .

newNetLogoHeadlessWorkspace ( )
workspace . openModel (model )
workspace . command( " Setup " )
. . .
workspace . command( " head le s s−go " )

while ( p r o c e s s i ng == 0) :
time . s l e e p (20)
p ro c e s s i ng = workspace . r epor t ( "

IS_FINISHED" )
t i c k s = str ( workspace . r epor t ( "

t i c k s " ) )
print ( " Ticks : " + t i c k s )

4.4 Parameter optimization

Another implementation of the algorithm was de-
veloped in Java so as to achieve a better way
of finding optimal parameter values for the al-
gorithm. This had various reasons such as per-
formance and adaptability for future work. With
the possibilities of object-oriented programming,
the created simulation environment matching the
problem statement is only based on 3 functions
and it is now possible to simply exchange the al-
gorithm of a production plant to compare differ-
ent approaches with one another. The creation

1https://pypi.org/project/NL4Py/

Table 3: Evaluation parameters.
Parameter Value
Initial RNG seed 58008
Number of simulation runs 100

of new algorithms is also fairly easy and for data
comparison, a simple first come, first served algo-
rithm was also used.

5 Simulation results

The simulation results of the NetLogo model
are evaluated based on average flow factor and
tardiness of the lots. Table 3 details the used
evaluation parameters.

flow factor = production_time/RPT

tardiness = production_time − RPT

The hormone algorithm was tested using the pa-
rameters outlined in Table 1, Table 2 and Table 3.
Results are depicted in Table 4.
Table 4: Hormone algorithm average simulation re-
sults.

Average Value
Time to produce all lots 173 h
RPT 59 h
PCT 348 h
Tardiness 114h
Flow Factor 2.93

A FCFS (first come, first served) algorithm was
used to contrast the results. It ran with exactly
the same test set and resulted in the values de-
picted in Table 5.
Table 5: FCFS algorithm average simulation results.

Average Value
Time to produce all lots 184 h
RPT 60 h
PCT 331 h
Tardiness 124 h
Flow Factor 3.05

With the used parameters the hormone-based
production approach seems to perform slightly
better than an FCFS algorithm; however, con-
sidering the algorithm parameters in Table 2 are



ad-hoc values, there is a chance of improving the
efficiency of the hormone algorithm by optimizing
the parameters, which was done with the imple-
mentation in Java. While the NetLogo simulation
ran on multiple randomly generated sample sets
to gather a better general understanding of the
speed of the algorithm, the Java version used the
same configuration of machines, lots and products
and just the parameters were altered. Table 6
and Table 7 show the fastest and the slowest sim-
ulation results and parameter values of the Java
hormone algorithm. The algorithm with the opti-
mized parameter set performs 9% better than the
reference algorithm, however, it has to be noted
that the optimization was done for a single test
case. More importantly, while the two tables de-
pict a potential for optimization of parameters,
they also show that even with a bad parameter
set the algorithm works slightly better than the
FCFS algorithm. For reference, Table 8 shows
the outcomes of the FCFS algorithm.
Table 6: Hormone algorithm parameters yielding the
fastest result for the tested sample set.

Name Value
α 0.2
β 3.0
γ 0.6
δ 0.3
ε 0.7
Time to produce all lots 152 h

Table 7: Hormone algorithm parameters yielding the
slowest result for the tested sample set.

Name Value
α 0.3
β 3.0
γ 0.5
δ 0.1
ε 1.0
Time to produce all lots 164 h

Table 8: FCFS Algorithm for the tested sample set
Name Value
Time to produce all lots 165 h

6 Related Work

In a dynamic job shop, currently applied dis-
patching rules are based on heuristics with the
disadvantage of not optimizing lot sequences. Al-
though linear optimization methods are used to

strengthen the scheduling procedure, they cannot
cope with the highly complex, large, and dynamic
search space (Lawler et al., 1993), mostly due to
the excessive and unfeasible computation time in
dynamic production plants. This leads to bot-
tlenecks and work in progress (WIP) waves are
generated. So far, no optimal solution for job
shop scheduling has been developed using linear
optimization that can be computed in polynomial
time (Zhang et al., 2009).

In the course of this paper, we model the
production plant as a self-organizing system of
agents. Due to its non-linearity, it is able to
produce near-optimal solutions for NP-hard prob-
lems in feasible computation times (Zhang et al.,
2009; Dhiman and Kumar, 2017) by transform-
ing the problem from finding an overall solution
to defining a distributed algorithm that finds the
solution from the bottom up. The related work on
the application of self-organization in production
scheduling builds upon the particle swarm opti-
mization (Ghumare et al., 2015), and artificial bee
colony algorithm (Zhang et al., 2013), and ant al-
gorithm (Udomsakdigool and Kachitvichyanukul,
2008), to name but a few. Compared to these al-
gorithmic approaches, we do not create a swarm
that operates in a solution space to a given job-
shop scheduling set. Instead, we derive a bottom-
up approach, where embodied agents represent
physical entities in the fab, and work with local
rules from which a global behavior emerges. This
presents a novel approach in the application of
self-organizing principles in job-shop scheduling.

This approach can be implemented with an
artificial hormone algorithm. It is a bio-inspired
self-organizing algorithm to produce near opti-
mal solutions in NP-hard, highly complex and dy-
namic systems based on relatively simple and lo-
cal rules. The algorithm was introduced by Sobe
et al. (Sobe et al., 2010) and describes the inspi-
ration by the endocrine system of higher mam-
mals on the technical application of sharing mul-
timedia units. The main principle describes vir-
tual hormones that show their interest in spe-
cific interest units with their concentration den-
sity. These hormones are created, consumed or
evaporated, and forwarded by the agents in this
artificial hormone system (Szkaliczki et al., 2013).
Artificial hormone systems have been applied in
technical systems such as task allocation (Renteln
et al., 2008), synthesis of robot controller soft-
ware (Hamann et al., 2010), or content delivery
in dynamic networks (Schelfthout and Holvoet,
2003). Trumler et al. (Trumler et al., 2006) pro-



pose an artificial hormone system as middleware
for ubiquitous computing, as for example in smart
office applications. Brinkschulte et al. present an
artificial hormone system for task allocation for
heterogeneous processing units in a processor grid
to realize self-X features (self-configuration, self-
optimization, self-healing) (Brinkschulte et al.,
2007; Brinkschulte et al., 2009). Sobe et al. (Sobe
et al., 2015) build a middleware inspired by an
artificial hormone system for search and deliv-
ery of information units. They showcase the
applications of multimedia distribution at so-
cial events, and the information dissemination in
smart electrical microgrids using tens of thou-
sands of agents. The evaluation was also per-
formed on a theoretical foundation to show that
the hormone levels converge to a limit at each
agent using a set of theorems on convergence con-
ditions (Szkaliczki et al., 2016). Finally, Dong
et al. (Dong et al., 2010) successfully proposed
the artificial hormone algorithm for clustering in
wireless sensor networks to prolong the lifetime of
the sensor nodes. Further details on the origins
of the artificial hormone algorithm, including the
medical background of the endocrine system and
its digitization, can be found in Xu andWang (Xu
and Wang, 2011).

7 Conclusion

The novel contribution of this paper is the ap-
plication of an artificial hormone algorithm in the
context of a job-shop scheduling system such as
a large semiconductor fab from the bottom-up.
The algorithm builds upon five principles, which
are (i) machines produce hormone to attract lots,
(ii) hormone diffuses process-upstream, (iii) in-
coming lots diffuse hormone, (iv) lots are priori-
tized by their timing, and (v) lots are attracted
by hormone. Via these mechanisms, machines
can balance their workload by pulling required
lots towards them. The algorithm has been im-
plemented and evaluated in a NetLogo simulation
model. Simulation results indicate that the artifi-
cial hormone system provides an improvement of
around 5% for overall production time and flow
factor.
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