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Abstract—In distributed real-time communication systems,
common knowledge of the global time is crucial. It prevents
message violations on the bus and allows independent components
to collaborate within a real-time system on a timely basis.
Systems with hard real-time requirements need to have high
precision and accuracy of time. This is achieved by hardware-
supported frame time-stamping mechanisms as found in dedicated
protocols like Time-Triggered CAN (TTCAN), Flexray, and
Time-Sensitive Networking (TSN)-enabled Ethernet. However,
many microcontroller units are not specifically designed to
provide such a hardware-based solution at the communication
interface. Therefore, a software-based implementation of the
time synchronization algorithm is needed. Nevertheless, some
Commercial off-the-shelf (COTS) microcontroller units already
provide an IEEE 1588-enabled Ethernet interface, including a
high precision timer module with rate correction. This module
can be used for time synchronization purposes to align a set of
distributed clocks via various communication interfaces.

This paper investigates the accuracy of software-based and
hardware-supported time synchronization algorithm over the
Controller Area Network (CAN) protocol using a COTS micro-
controller. As a result, we present identified jitter and delay
sources as well as the achieved time accuracy. We show that using
an advanced timer module combined with additional system
knowledge allows sub-microsecond precision and accuracies.

Index Terms— Real-Time, Software, Synchronization, Clock,
Accuracy, CAN
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I. INTRODUCTION

IN time-sensitive applications (e.g., automation), a common
time base of multiple communication participants is an in-

dispensable element [1]. The favored synchronization protocol
in Ethernet-based industrial communication is the Precision
Time Protocol (PTP) [2] which fills the gap between Network
Time Protocol (NTP) [3] and Global Positioning System (GPS)
timing accuracies. It applies a simple information exchange
sequence that achieves an accuracy within the sub-microsecond
range. A more accurate PTP extension is the White Rabbit
protocol which reaches an accuracy in the sub-nanosecond
range [4]. This is significantly better than the widely used NTP,
which typically achieves results in the range of milliseconds [3].
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The improvement is attributed to the Network Interface Card
(NIC) hardware extension that deterministically timestamps
incoming and outgoing messages directly at the physical port.
This omits local time-jitter which is otherwise introduced by
interrupts, context switching, and software execution making
time reference measurements more accurate.

Besides Ethernet, the CAN protocol provides hardware-based
time-stamping through ISO 11898-4 [5] resulting in the TTCAN
protocol. Since the hardware implementation is exclusively
implemented in the TTCAN transceivers, this feature is not
readily available in generic CAN modules. To close this gap,
[6] presents a possible CAN controller design where an external
time-stamping unit is attached to a CAN controller returning a
time-stamp on each capture event. However, not even CAN-
FD [7] as a successor of CAN includes this technology.
Therefore, available and future CAN controller units still require
a software-based clock synchronization approach.

In this work, we want to investigate the achievable accuracy
of a software-based and hardware-supported clock synchro-
nization approach using CAN as communication interface
and COTS controllers. A rate-adjustable high-resolution timer,
exploited from an IEEE 1588-enabled Ethernet interface as a
stand-alone module, provides the hardware support. Having
this module, various communication protocols may be enabled
for time synchronization instead of being limited to a single
dedicated interface.

The remainder of this paper is organized as follows:
Section II gives an overview of available synchronization
techniques showing their benefits and drawbacks. In Section III,
we propose our clock synchronization approach, which min-
imizes communication delays and jitter to improve accuracy.
Section IV describes the test setup as well as the applied
measurement techniques and tools. Section V presents the
relevant delay and jitter sources followed by the improved
synchronization result obtained by utilizing the rate correction
mechanism. Section VI concludes the paper.

II. RELATED WORK

Over the last decades, different software-based clock synchro-
nization approaches over CAN have been presented. They can
be divided into centralized and decentralized techniques. The
former technique utilizes at least one dedicated participant that
provides its local time as reference time. In contrast, the later
technique uses implicit or published information to synchronize
the distributed clocks.

As applied in TTP/C [8], a decentralized synchronization
approach requires predefined knowledge of the transmission
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Figure 1: Two synchronization frames send from the master to
the slave as presented by [12].

time of messages carrying important information. This tech-
nique thus relies on message broadcasts since all participants
must receive a transmitted message at the same time to align
their local clocks. Here, each node implements the same time
correction routine to compare the message arrival times to the
expected reception times obtained from the communication
schedule. The measured difference is fed into a fault-tolerant
averaging algorithm which periodically returns a correction
term used to keep the local clock synchronized to the other
clocks. This mechanism allows robust clock synchronization
without requiring additional control messages. However, the
synchronization mechanism depends on active communication.
The clocks start to get imprecise as soon as the communication
stops, or the communication rounds show enlarged windows
where the bus is in an idle state.

Centralized synchronization, as mentioned before, requires
at least one dedicated participant that provides its local time
as reference time. This leads to two possible synchronization
approaches that are named client-server and master-slave. The
client-server approach is driven by the client who requests the
server for resynchronization periodically or when it detects an
increased time offset. This approach may lead to increased in-
accuracies in distributed systems since the synchronization mes-
sages need to travel through multiple network components [9].
As found in heterogeneous complex networks, transmission
delays also impact the communication’s temporal quality and,
therefore, also need to be compensated [10]. However, an
automated transmission delay compensation mainly depends
on the temporal accuracy of the distributed clocks such that
the transmission delay of a certain communication path can
be resolved.

A popular example for the client-server approach is NTP [11]
which synchronizes all distributed clocks to a common time
base provided by at least one server. Thereby, the time is
not distributed by a server but requested by the clients. The
exchanged packets have a fixed structure where both the
requesting client and the server fill in the packet’s transmission
and reception time from their individual perspectives. After
the information exchange, the client can now calculate the
time difference to the master, including the message round-
trip time, to correct its local clock. This approach works very
well for Ethernet but is not feasible for CAN since each node
needs to be treated individually. Consequently, the more nodes
periodically synchronize their time, the less bandwidth remains
for other messages.

A promising technique uses a master-slave approach where
the master periodically transmits a synchronization frame [12].
As shown in Fig. 1, the master starts the frame transmission

at time t1, which finishes at time t2. At t2, all participants
take a snapshot of their local time triggered by the master’s
transmission and the slave’s reception event. Each timestamp
taken by the master is used to be transmitted in the subsequent
synchronization frame. This procedure also applies to the
following frames. The slave’s correction algorithm is performed
between t′3 and t′4 where it adjusts its local time using the local
and the master’s timestamp from the previous synchronization
round. The authors claim that their algorithm needs less than
20 messages per second to achieve an accuracy of 20 µs at a
transmission speed of 1Mbit/s. Recent work of Akpinar et
al. [13] improved this approach by 60% by also taking the
oscillator’s clock drift into account.

Another interesting approach presented by Rodriguez-Navas
et al. [14] also follows a master-slave scheme. To mitigate
the effect of master-based clock drifts, they minimize the
time between fetching and transmitting a timestamp. This is
achieved by taking a timestamp on the resynchronization event
of a frame’s start-of-frame bit and adding it as a payload to
the currently ongoing frame transmission. Since the timestamp
is bound to the frame’s starting point, it eliminates the risk of
erroneous synchronization caused by missing synchronization
messages and thus adds fault-tolerant behavior. Although the
authors described a hardware-based solution, their approach can
also be realized in software. However, this is only possible if
the CAN controller provides a start-of-frame event and allows
data modification while the currently transmitting frame is in
the arbitration phase.

The available solutions solely correct the clock’s offset
but do not modify the clock’s tick rate. As a drawback, the
achievable accuracy depends on the system’s worst clock drift
rate. This impacts the synchronization quality and results in a
discontinuous time which is a problem when a slave’s clock
ticks faster than the master’s clock. From the slave’s point of
view, it jumps back in time when its clock offset is corrected.
Consequently, two events may be assigned to the same local
timestamp, although their global event time is different. This
situation must not be allowed in a real-time system. Another
interesting finding showed that the majority of these approaches
do not investigate the communication path. Communication
jitter and delays are mentioned, but neither their sources nor
possible countermeasures are proposed. For instance, none
of these works investigate the impact of the applied CAN
transceivers or the microcontroller’s interrupt behavior that
also introduces delays and jitter.

With the rise of IEEE 1588, also known as PTP, various
works were published investigating the limitations of this
synchronization protocol or leveraging the IEEE 1588 timer
to perform a partially hardware-assisted time-synchronization.
The work of Ferencz et al. [15], for example, describes an
Ethernet-based network where the nodes consist of COTS com-
ponents. The node hardware thereby runs a standard, non-real-
time version of Linux and special software implementations
written by them. They showed that they could achieve a sub-
microsecond accuracy where the measured time offset mean
value is µ = 5.30 ns having a standard deviation σ = 40.64 ns.
Another work written by Loschmidt et al. [16] presents the
synchronization limits of IEEE 1588. The authors address the
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main factors for jitter that negatively influence the accuracy of
purely hardware-supported time synchronization over Ethernet.
They claim that the most relevant jitter source is the local
oscillator which frequency jitter must therefore be as low as
possible. In [17], the authors extended a LAN eXtensions for
Instrumentation (LXI)-based measurement system using PTP
and showed significant improvements over previously applied
synchronization technologies. They presented time-offset results
using COTS and IEEE 1588-enabled network components and
claimed that hardware timestamping is a key feature to achieve
the most accurate synchronization results.

Over the last decades, great effort has been put into the topic
of clock synchronization techniques. Purely hardware-based
synchronization techniques result in very accurate time synchro-
nization. Nowadays, this kind of technology is widely available
in many Ethernet-enabled embedded devices. However, other
popular embedded communication interfaces like CAN do not
provide such a feature. To our best knowledge there is no
work available which investigates the precision of a software-
based and hardware-supported time-synchronization over CAN.
This lack of information encouraged us to investigate relevant
communication path components and synchronization mecha-
nisms which outcome is used to propose a high-precision clock
synchronization approach over CAN. Its performance is first
demonstrated using a simple offset correction mechanism and
extended by an additional rate correction method where we
exploited an adjustable high-precision timer module.

III. PROPOSED APPROACH AND REQUIREMENTS

Many COTS microcontroller units with a built-in CAN
periphery unit provide event sources indicating the successful
transmission and reception of a CAN frame. Therefore, our
work applies a similar approach as described by Gergeleit
et al. in [12], where specific communication events are used
to capture timestamps on every node. This approach eases
the measurement of hardware and software delays which are
necessary to correct the captured timestamps.

A. Exploiting Adjustable High-Precision Timer Modules

An increasing amount of COTS microcontroller units provide
an IEEE 1588-enabled Ethernet interface. As a feature, this
module includes a dedicated high-precision real-time timer that
provides a clock rate correction mechanism. This mechanism
guarantees a continuous time representation which is not easily
achieved with a purely offset corrected approach. However,
only when the timer module is accessible via software its rate
correction capabilities can be exploited. This feature massively
increases the distributed clocks’ synchronization quality, which
is proven by the results of this paper.

B. Communication Delays and Event Jitter

Microcontroller units usually do not output the proper voltage
levels of a CAN interface. Thus, to connect a controller
to a CAN bus, an additional CAN transceiver is required.
Consequently, a CAN frame must be routed through the
sender’s transceiver to the bus and from there through the
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Figure 2: Investigation of distinct points in time to gather
information about the communication path delays and the
interrupt mechanisms.

receiver’s transceiver to the receiver. Compared to the delays
introduced by the microcontroller, we expect a rather low
impact from the transceivers. However, also small delays
directly influence the synchronization quality, which requires
them to be investigated.

We assume that static delays are not an issue for the quality
of synchronization. They need to be known to compensate for
their effect using an additional correction term. Unfortunately,
this is not the case for jitter since we cannot fully compensate its
influence. To mitigate this effect, we need detailed information
about the relative time when the slaves and the master take
their timestamps. Thus, we need to investigate specific points
in time, as shown in Fig. 2, to determine the delays introduced
by internal event generation mechanisms. tTx represents the
end of the transmitting message, whereas tRx is the endpoint of
the corresponding message at the receiving node. The starting
point of the transmission-related or reception-related interrupt
service routine is represented by tTx,Ev or tRx,Ev.

The transceiver’s impact is obtained by calculating its
communication delay with ∆ttrans = tRx − tTx. Since the
transmission and the reception interrupt may follow different
mechanisms, we also need to investigate their behavior. The
delay of the master’s transmission event is obtained with
∆tTx,Ev = tTx,Ev − tTx, which gives information about the
delay until the interrupt service routine is executed. Finally,
the offset error between the slave’s and the master’s event is
calculated with ∆tEv = tRx,Ev − tTx,Ev.

C. Synchronization Frames

In [12] and [13], two consecutive synchronization frames
can be separated by numerous general-purpose messages.
This behavior may influence the overall precision since the
distributed clocks may drift apart while no synchronization
frame is received. Therefore, our approach transmits two closely
spaced messages per synchronization round which is favorable
since we minimize the influence of clock drifts. As shown
in Fig. 3, the master starts a new synchronization round
by transmitting a SYNC message at t1. When the message
is transmitted at t2, the master’s transmission event trigger
captures its current local timestamp tm. Nearly simultaneously
also the reception event of each slave triggers that causes
them to capture their local timestamp tsync. It was observed
that the master’s transmission event triggers slightly before
the slave’s reception event. Internal mechanisms of the CAN
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Figure 3: Two synchronization frames send from the master to the slave as presented by [12].
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Figure 4: Control loop which is used to adjust the clock rate
based on the determined time error.

module may cause this behavior. Thus, between t3 and t4,
the agents compensate the observed average time error to the
master by calculating t′sync = tsync − ∆tEv, where ∆tEv is
the average time error between the master and the slave event
trigger. In the meantime, the master distributes tm via the
follow-up message labeled as FUP and starts its transmission
as soon as possible at t5. When the FUP message is received at
t6, the slaves take another timestamp tfup before they extract
tm from the message. Using the collected information, the
agents can now invoke the correction mechanisms at t7, which
terminates at t8.

We are aware that this concept is vulnerable to partially
missing synchronization messages. To avoid time corrections
based on incomplete information, we propose some require-
ments that add fault tolerance to the synchronization procedure.
Only if the following requirements are fulfilled, the correction
procedures are allowed to be invoked:

• A SYNC message must be followed by a FUP message.
• The time interval between these two messages must be

within a predefined time window.
• Provide multiple time-masters to avoid a single point of

failure as described in [14].

D. Clock Rate Correction

The low synchronization accuracy of available software-
based solutions is owed to the different clock rates within the
system. Consequently, the available accuracy is a function of the
maximum clock rate error and the frequency of synchronization
rounds. The bigger the error, the more synchronization rounds
must be run to keep the quality of synchronization. Thus,
a clock rate correction mechanism paired with an initial
offset compensation technique is the key to achieve a high
synchronization accuracy.

As shown in Fig. 4, the control loop requires tm and t′sync
to determine the current offset error. Based on this error,
the control loop adjusts the Ethernet timer’s clock rate by

modifying the timer’s addend register to minimize the clock
error. The addend register is initialized with a default value
as soon as the node is powered on. As mentioned before,
timestamp tm and tsync are captured after the successful
transmission of the SYNC message. Afterward, each slave
performs an offset correction of tsync based on which we
obtain t′sync. When the slave receives the FUP message, it
captures tfup and extracts the master’s timestamp tm from
the payload. Following, it calculates the current offset error
∆terr = t′sync− tm, which outcome is forwarded to the control
loop. The obtained control value u is added to vdef , which
equals the clock’s default timer addend value. The resulting
value named v is finally loaded to the timer’s addend register
that adjusts the timer’s clock rate.

E. Clock Offset Correction

When a slave is powered on, its time offset to the master
could be already too big, leading to an unstable behavior of
the control loop. Thus, we need to define an upper boundary
∆tmax which indicates the maximum allowed time offset. If
|∆terr| > ∆tmax, an offset correction needs to be applied to
align the slave’s clock to the master’s time.

As a first step, the time which elapsed during the transmission
of the FUP message needs to be compensated. This is achieved
by calculating the offset between the slave’s timestamps with
∆tdiff = tfup − tsync. In contrast to the rate correction
mechanism, we do not need to correct the timestamps since the
hardware-based delay affects them. Consequently, only its jitter
influences the calculated offset. Besides the hardware-based
time errors, the software-based time errors also contribute to
the total time error and thus need to be taken into account. The
software-based time error named ∆tsw occurs at the slave’s
side between the reception of the FUP message and the update
of the local clock’s time register. During that time, the node
extracts tm from the FUP message upon which it performs the
time correction operations shown in Eq. (1). In our experiment,
∆tsw was determined via measurements which results are
presented in Table I. With this information, we can now derive
the master’s time

t′m = tm +∆tdiff +∆tsw (1)

at the point in time when the slave updates its local clock time.

IV. SYSTEM AND MEASUREMENT SETUP

The measurement setup is used to extract communication-
related time information and to monitor the distributed system’s
clock accuracy. The basis of our communication nodes is



5

Slave B

Oscilloscope

Slave A

Master

pin

CAN
Transc

CAN
Transc

CAN
Transc

pin

pin
Rx

Tx

Figure 5: Hardware architecture consisting of a host PC, an
oscilloscope, and three controller nodes.

the XMC4700 microcontroller [18] that contains an ARM
Cortex-M4 core running at 144MHz. The utilized 12MHz
crystal oscillator [19] is not temperature compensated leading
to different drift rates as shown in our results. The controller’s
Ethernet interface features a standalone 64-bit timer used for
the IEEE 1588-based time synchronization. The lower double
word represents the sub-second part having a 1 ns resolution,
whilst the upper double word represents seconds. As a feature,
this timer can be accessed and controlled via software which
enables us to exploit the timer’s offset and skew correction
capabilities.

The communication architecture presented in Fig. 5 applies
three nodes where one node is selected to be the time-master
whilst the remaining nodes are the time-slaves. To distinguish
between the obtained results, the slaves are denoted as slave A
and slave B. Each node’s communication lines are routed
via a CAN transceiver [20] to the bus. The applied cable
length between the master and the slaves is 50 cm. The default
synchronization round’s period time is set to be one second. It
is important to note that within the context of this paper, the
temporal precision of a short-distance CAN bus is investigated.
Thus, all assumptions and the depicted results neglect the frame
propagation delay. Nevertheless, with an increasing bus length,
the propagation delay may become relevant, which theoretical
impact is discussed in Section V.

The CAN frame transmission and reception delays are
acquired with the help of an oscilloscope [21]. Here, the
master’s transmission line and the reception line of slave A
are monitored. To gather information about the transmission
respectively reception event delay, the state of a dedicated pin
is toggled as soon as the nodes enter their interrupt service
routines. Since all slaves run the same firmware, we assume that
they behave the same except for possibly different clock rates.
Thus, the required information was gathered by monitoring a
single slave’s communication.

To analyze the accuracy of the distributed clocks, the slaves
periodically transmit a set of timestamps to a monitoring host
computer using their Ethernet interface. This set includes the
received master’s timestamp tm and the corrected timestamp
t′sync. The transmission happens during the FUP frame’s event
execution and, thus, once per synchronization round.

A. Service Routine Execution Jitter

Interrupt service routines do not execute immediately when
an event is detected. Depending on the currently executed
instruction, the interrupt execution can be delayed for several
clock cycles. In our case, the controller’s execution delay ranges
from one up to 12 clock cycles [18]. The maximum possible
time error between the master and a slave occurs when, for
example, the master’s interrupt service routine triggers after
one clock cycle while the slave’s routine is delayed by 12 clock
cycles. Although both nodes may have registered the event
simultaneously, this scenario represents the worst case since
it leads to the maximum time error, which is approximately
83 ns.

While this execution jitter impacts both correction mech-
anisms, we assume that the accuracy of the rate correction
mechanism mainly suffers from that jitter. Two setups were
applied to investigate the cause of varying interrupt service
routine execution delays. The first setup solely runs the Ethernet
message handler within the main loop, while the second setup
is extended by a bubble-sort algorithm that processes randomly
generated data. The added lines of code change the pool of
available instructions, whereas the additional execution paths
influence how often specific instructions are executed. Based on
this, we investigated the impact of code changes on the interrupt
service routines’ execution delay. The resulting distributions
were obtained by running 10× 103 synchronization rounds.

B. Low Jitter Software Execution

The quality of software-based clock synchronization also
depends on the execution time jitter of crucial functions like
interrupt service routines. Here, the sequence of function calls
as well as the function’s execution path is relevant. Since
timestamps are time-dependent information, their fetching
should be preferred over other routine executions. This is
important since prior code execution would add a delay that
influences the captured timestamp’s result.

At the slaves, the execution of the offset-correction function
during the SYNC’s interrupt service routine is not critical since
it neither modifies the local clock’s value nor its rate. Thus, this
implementation is not required to follow specific optimization
rules. This does not apply for the functions which are called
within the FUP interrupt service routine before the clock’s
time register is updated. Here, the required code execution
time directly influences the accuracy of the offset correction
mechanism. Consequently, a constant execution time is desired
to mitigate its effect by minimizing the execution time jitter,
achieved by avoiding execution branches [22].

C. Software Execution Time Measurement

It is important to know the execution times of specific code
segments within the interrupt service routines to correct the
fetched timestamps accordingly Both the SYNC and the FUP
interrupt service routine first call a function that fetches a
timestamp. This is already the crucial code execution within
the SYNC routine that is solely important for the rate correction
mechanism. However, the FUP routine requires additional
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Figure 6: Influence of code changes on the trigger offset
between the master and a slave. Example (a) shows the offset by
solely executing the Ethernet message handler while example
(b) additionally executes a bubble-sort algorithm.

information to compensate for the elapsed time until the offset
correction is executed.

We applied two measurement techniques to obtain the
required information: Technique (1) utilizes an output pin
as described in Section III-B and monitors its state change
using the oscilloscope. To determine the code execution time,
we now also toggle the pin state when the interrupt service
routine reaches its end. The software-based delay is now
determined by measuring the difference between the two toggle
events. Technique (2) utilizes the exploited timer where we
take timestamps instead. The obtained time offset is gathered
by transmitting it via the Ethernet interface to the host. Both
results are presented in Table I.

V. RESULTS

At the very beginning, we measured the timings as described
in Section III-B. Our findings showed that the applied CAN
transceiver adds a constant delay of 143 ns to the communica-
tion path. It exhibits a minimal jitter by having a standard
deviation of σ = 166 ps and is thus classified as a non-
critical path component. However, since this offset applies
to all participants (also for the master’s reception path) it is
unnecessary to use it as an error correction factor.

Following, we observed the event trigger offset ∆tEv, which
results are shown in Fig. 6. The distribution shown in Fig. 6a
corresponds to the execution of the main loop that solely
executes the Ethernet message handler. In Fig. 6b, the observed
node additionally executes a bubble-sort algorithm which works
on randomly generated data. The outcome shows that this small
change already influences the service routine’s invocation where
the additional execution paths in (b), on average, require fewer
clock cycles. The following outcomes have been obtained based
on setup (a). Therefore, the event offset correction value has
been set to ∆tEv = 94ns which corresponds to (a)’s mean
value.

Finally, we measured the software-related delays, which
results are shown in Table I. The first row shows the results
obtained by measuring the state changes of a pin using an
oscilloscope. In the second row, we present the results using
timestamp measurements instead. The two approaches slightly
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Figure 7: Time offset error of an uncontrolled system.

deviate since their number of executed instructions and thus
their execution time differ. Since the implementation of the pin-
based approach is simpler, its results are assumed to be more
precise. Thus, the FUP result has been used to compensate for
the software-related offset error. By taking ∆tEv into account,
we thus obtain two temporal correction values. The first value
is the SYNC-related correction value ∆tSYNC,corr = ∆tEv

which is crucial for the rate-correction technique. The second
value is solely important for the offset-correction technique
and is based on Eq. (1), where ∆tFUP,sw = 7.65 µs.

As we gathered all relevant information, we observed
the uncontrolled system behavior by measuring the time
difference between the slaves and the master. Except for an
initial clock alignment, no additional correction technique
is applied. Thereby, all slaves initialize their time within
the fup_offset_irq() routine using the raw timestamp which
they received from the master. Thus, delays like the message
transmission time, interrupt execution delays, and software
execution times contribute to the offset, as shown in Fig. 7 at
time t = 0. Both slaves show approximately the same time
offset to the master, which is toff ≈ 125 µs. The major portion
of the delay is attributed to the transmission of the fully-loaded
standard CAN frame.

Although both slaves are very precise at t = 0, their various
clock rates lead them to drift away with the progression of time
immediately. Based on this measurement, the observed time
error for slave A is 2.86 µs, while slave B’s time error is 1.54 µs.
Assuming that the master’s system clock is perfectly ticking
with 144MHz, the determined frequency error for slave A is
ferr ≈ 412Hz, while for slave B it is ferr ≈ 222Hz. However,
in general, a node’s clock rate heavily depends on the stability
of the applied crystal oscillator and thus may drastically change

Measurement µ σ

Pin-Toggle 2.31 µs 19.76ns
Timestamp 2.92 µs 15.44ns

(a) SYNC interrupt service routine.

Measurement µ σ

Pin-Toggle 7.65 µs 27.52ns
Timestamp 8.93 µs 63.87ns

(b) FUP interrupt service routine.

Table I: Software execution times depicting average measured
time and standard deviation using different measurement
approaches.
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Figure 8: Observed synchronization frequencies when exclu-
sively running the offset correction technique.

Sync Rate (Hz) µ (ns) σ (ns)

1 1621.25 108.16
4 517.42 73.48
32 180.29 40.83

(a) Slave A

Sync Rate (Hz) µ (ns) σ (ns)

1 2036.26 103.81
4 611.23 71.11
32 191.18 39.93

(b) Slave B

Table II: Offset error’s mean value and standard deviation for
different synchronization rates.

with a changing environmental temperature.
In the following step, we applied ∆tFUP,corr = ∆tdiff +

∆tFUP,sw to compensate for the time delays. In addition, we
introduced an upper time deviation boundary ∆terr,max = 10 µs
beyond which the offset correction mechanism is triggered. As
shown in Fig. 8, we obtained saw-tooth-shaped curves that
are distinctive for this technique. Slave B requires a higher
offset correction frequency than slave A to keep the same
synchronization quality which origins from slave B’s increased
clock rate error. The first saw-tooth of slave A violated the upper
boundary earlier, leading to an earlier offset correction. Its zero-
line offset error is a measurement artifact since the obtained
timestamp is taken before the offset error is corrected. Thus,
the observed error is the clock drift that happened between two
synchronization rounds. Without a clock rate correction feature,
this behavior mainly impacts the synchronization quality.

The only possibility to improve the accuracy of an offset
correction is to increase the synchronization rate. The master’s
synchronization rate was set to three different values to prove
this, as shown in Table II. As a first outcome, both slaves
show a maximum time offset in the range of two microseconds.
As it is shown, the slaves become more accurate and more
precise with an increasing synchronization rate. However, as a
drawback, the additional synchronization messages shrink the
available bandwidth.

Finally, we enabled the rate correction mechanism using
the settings described in Section III-D. The outcome of this
correction is seen in Fig. 9a, where both clock rates are
corrected after 24 synchronization rounds. Since slave A has
an increased clock rate error, its transient behavior is more
distinct than slave B.

In Fig. 9b, the steady-state offset errors of both slaves are
shown. Within this short time frame, the observed uncertainty
stays within ±100 ns. To better understand of the system’s
accuracy over time, we observed the offset error for 11× 103

synchronization rounds which corresponds to about 3 hours
run-time. The obtained accuracy distributions are presented in
Fig. 10, where both slaves have nearly the same mean value
and standard deviation. These results confirm that the rate-
correction technique guarantees a constant accuracy even over a
longer time period. By comparing this outcome with the values
of Table II, our approach outperforms the offset-correction
technique in terms of accuracy, synchronization quality, and the
number of required synchronization messages. This is also true
compared to a purely software-based synchronization solution,
as Gergeleit et al. [12] presented, achieving an accuracy of
20 µs. At the same time, it requires less than 20 messages per
second. Although Akpinar et al. [13] improved this software
synchronization approach by 60%, it is still less accurate than
our approach. A comparable result is achieved by Ferencz
et al. [15], who managed to measure an average accuracy of
µ = 5.30 ns while having a standard deviation of σ = 40.64 ns
using a Linux-based system where nodes are synchronized via
Ethernet.

As mentioned in Section IV, these results were obtained by
investigating a short-distance bus. Thus, the question arises
of how increased bus lengths impact the accuracy of this
synchronization approach. We assume that the propagation
delay, as a function of the bus length and the transmission
medium between the sending and the receiving node, adds
a constant time error to the system. Thus, increased bus
lengths may have only minimal influence on the overall clock
synchronization since they can be easily compensated if known.
In such a system, the propagation delays can be determined via
two approaches: Approach (1) applies offline measurements
where the individual distances between these slaves and the
master are determined. With that knowledge, it is now possible
to configure each slave using its specific path correction
value. We assume that this approach can compensate for the
propagation delay very well. However, its downside is an
increased measurement effort that needs to be repeated as
soon as the bus configuration changes. Approach (2) uses an
automated path-correction approach where the master performs
propagation delay measurements with each slave when the bus
is initialized. Since the entire propagation delay measurement is
automated, it requires no additional effort even when the bus is
changed. Nevertheless, the quality of the determined correction
value may decrease with a decreasing bus length since the
system might be unable to resolve the actual propagation delay.

The maximum bus length for CAN at 1Mbit/s is specified
as 40m. Assuming a propagation delay of 5 ns/m over a
twisted-pair cable [23], this bus length introduces a constant
delay of 200 ns from the sending node’s transceiver to the
receiving node’s transceiver. With the achieved accuracy, it
would thus be possible to distinguish between the short and the
maximum allowed path distance. However, based on our results,
this approach seems to be very imprecise for the applied setup
since path lengths below 20m result in propagation delays in
the system’s precision noise range.
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Figure 9: Time offset error to the master with offset and rate correction applied.
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Figure 10: Offset error to the master node using the (a) mid-
offset and the (b) individual offset.

VI. CONCLUSION

We presented a scalable CAN-based clock synchronization
technique where we exploited a high-precision timer part of a
microcontroller’s IEEE 1588-enabled Ethernet interface. We
showed that the timer’s rate-correction capability drastically
improves the clock synchronization as well as its quality. The
influence of clock drifts is minimized by transmitting two
messages closely together. The first message indicates a new
synchronization round, while the second message contains the
previously captured master timestamp. Due to the minimized
clock rate error, the number of synchronization rounds can
also be decreased. This consequently increases the available
bandwidth used by other frames. The achievable accuracy
lies in the sub-microsecond range, which outperforms purely
offset-based synchronization approaches.
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