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Abstract — To improve the energy awareness of consumers,
it is necessary to provide them with information about their en-
ergy demand, not just on the household level. Non-intrusive
load monitoring (NILM) gives the consumer the opportunity to
disaggregate their consumed power on the appliance level. The
consumer is provided with information about the energy de-
mand of each individual appliances. In this paper we present
an evolutionary optimization algorithm, applicable to NILM
purposes. It can be used to detect appliances with a prob-
abilistic power demand model. We show that the detection
performance of the evolutionary algorithm can be improved if
the single population approach of the evolutionary algorithm
is replaced by a parallel population approach with individual
exchange and by the introduction of application-oriented pre-
processing and mutation methods. The proposed algorithm is
tested with Matlab simulations and is evaluated according to
the fitness reached and detection probability of the algorithm.

1 INTRODUCTION

The smart grid adds information and telecommunication
technologies to our current electrical grid to improve the
existing grid in order to create a more efficient, reliable
and sustainable grid. With the use of additional infor-
mation about consumed power and current costs of en-
ergy, the consumer gets the opportunity to develop and
to strengthen their energy awareness, where the incentive
for the consumer to be energy-aware is twofold: Firstly,
the consumer gets chance to save money by reducing
their energy consumption and secondly, the environmen-
tal pollution is decreased as a result of the consumer’s
consciousness about their energy consumption [2].
A possible information channel to improve the energy
awareness of consumers is by giving them the knowl-
edge of the power consumption of appliances within the
household [2]. By disaggregating the total power con-
sumption to an individual appliance level, the consumer
gets the opportunity to develop and improve steps to re-
duce their energy consumption by recognizing the power
demands of individual appliances in real-time. This can
lead to an energy saving of 12%. In contrast, in [11] it
is mentioned that the knowledge of energy can also be
counterproductive or neglectable to energy saving.
However, non-intrusive load monitoring (NILM), intro-
duced by G.Hart [8], deals with the possibility of dis-
aggregating the individual appliance power consumption

from the total consumed power of a household. The ba-
sis of NILM is it that different appliances have different
power consumption characteristics. In [13], the four gen-
eral appliance families are identified as: permanent con-
suming appliances, on/off appliances, multi-state appli-
ances and continuous consuming appliances. Beside this
knowledge, different solving approaches, such as pattern
recognition [10, 4] or optimization techniques [12], are
applied to the problem of identifying and disaggregating
appliances according to their power characteristics. In
general, the structure of a NILM system can be splitted
up into a data acquisition layer, an event detection layer
[5], a feature extraction layer [3] and a classification layer
[10].
In this paper we address the problem of classification of
power profiles through the use of a heuristic optimization
technique. More specifically, we are matching saved en-
ergy patterns of appliances into the total power load. We
use the evolutionary algorithm as an optimization tech-
nique to minimize the error between evolved power con-
sumption and the total power load. The evolutionary al-
gorithm is advantageous for search and pattern match-
ing tasks, because of its ability to produce solutions us-
ing only a simple problem description and because of in-
troducing parallel search for potential solution establish-
ments.
Our approach is based on the work in [7], where it is
shown that the evolutionary algorithm is a simple and
feasible solution for NILM use. The purpose of the al-
gorithm is to find a composition of saved power profiles,
place this composition in time and try to minimize the
error between the evolved power load and the given to-
tal power load. The algorithm is based on an abstract
and simplified definition of the disaggregating problem.
It uses an appliance model, where on/off appliances are
described by their power magnitude and time usage. This
leads to more precise description of the appliance model
than by using either the power magnitude or the time
duration and accordingly1, leads to an decrease of the
detection search space. Appliance use can only occur
once without a repetitive or periodic behavior and can-
not consume power constantly. This, and further restric-
tions, which are described in Section 2 in greater de-

1appliance can have same power magnitude or time duration



tail, are overcome in this paper by introducing several
pre-processing and mutation operations. With the pre-
sented algorithm, miscellaneous appliances with perma-
nent power consumption, simple on/off appliances and
appliances which run in a repeating or periodic manner
can be detected and identified. Beyond that, we intro-
duced in our evolutionary algorithm a parallel evolution
(PE) concept in contrast to the simple evolutionary (SE)
concept in [7]. This leads to a performance improvement
of the algorithm for both the reached fitness and detec-
tion probability. A further important step to make the
algorithm more realistic to real-world appliances and us-
ages is to introduce randomly varying time durations for
an appliance as well as randomly varying power mag-
nitudes. Therefore, we used normal and gamma dis-
tributed usage times of appliances and uniformly dis-
tributed power magnitude. This assumption changes the
simple approach of constant pattern matching to a prob-
abilistic pattern matching approach.
The remainder of this paper is organized as follows: in
Section 2 the general treated optimization problem is ex-
plained. In Section 3 the evolutionary optimization ap-
proach with its algorithm characteristics and functioning
is presented, followed by Section 4, where we describe
the used evaluation settings. To verify the proposed al-
gorithm we introduced Section 5 and 6 present fitness
trends of the evolutionary algorithm and the reached de-
tection probabilities. Finally, the paper is concluded and
future work is discussed in Section 7.

2 PROBLEM STATEMENT

Household appliances consume power in a characteris-
tic way, which makes it possible to distinguish between
different appliance types. The technique of non-intrusive
load monitoring (NILM) uses this fact to try and deter-
mine which type of appliance was used by knowing only
the total power consumed by household and the power
characteristics of an appliance type. In detail, NILM tries
to find out, which in a database stored power profiles
Pi(t) occurred in a given total power load P (t). Thus,
the total power load, P (t), depends on which appliances
and correspondingly, which power profiles, Pi, are used
as well as the appliances switched on at a given time.
The switching-on event of an appliance is defined as tsj ,
where j counts the on-switching events of an appliance.
The general appliance power profile Pi(t) is defined as:

Pi(t) = pi · ti, (1)

where pi is the appliance power and ti is the usage dura-
tion of a specific appliance. By modeling the switching
behavior as a state switching vector ai for every used ap-
pliance, a binary vector is constructed by ai(t) = 1 from
t = tsj to t = tsj + ti and 0 elsewhere. The total power

load P (t) can be presented by:

P (t) =

n∑
i=1

pi · ai(t), (2)

where n2 represent the number of appliances used. The
aim of NILM is it to approximate the total power load,
P (t), with a sum of superimposed appliance power pro-
files Pi(t), which results in the following optimization
problem:

e(t) = arg min

∣∣∣∣P (t)−
n∑

i=1

pi · ai(t)
∣∣∣∣. (3)

As mentioned in [8], this optimization problem is a NP-
hard problem, which is computationally intractable. We
solve this optimization problem by using an evolution-
ary algorithm, which is based on the work in [7]. The
approach begins by finding the starting events of appli-
ances by edge detection, followed by the placement of a
random composition of appliance power profiles (which
are stored in a database) at the computed starting events
in such a way that the randomly evolved composition of
power profiles approximates the measured total power
load with maximum fitness. The basic functioning of
this evolutionary NILM technique is shown in Figure 1.
In [7], it was shown that the presented evolutionary algo-
rithm is feasible for NILM purposes with the following
restrictions:

– No permanent, periodic or repetitively consuming
appliances.

– The algorithm is highly dependent on power pro-
files not stored in search database.

– The appliances are modelled with constant power
and constant usage times.

In detail, the abstraction of appliances with constant
power magnitude, constant time duration and with
unique appearance in the observation window is an un-
realistic mapping of reality. Thus, we introduce the ap-
pliance definition so that appliances can vary their power
magnitude as well as their usage duration. Specifically,
for every appliance the normal time of use varies from
user to user and from usage to usage. To simulate this
behavior and also correspondingly, to overcome this ob-
stacle, we need to know which distribution matches best
the on-duration distribution of appliances. In [9], it is
claimed that the gamma distribution approaches the on-
duration distribution of appliances best. In our approach
we assume that all appliances are behave independently
of each other and in addition, we used additional to the

2In this case the number of stored and for the evolutionary algorithm
used appliances is the same
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Figure 1: Basic principle of the ON/OFF time genome
appliance detection. Find a composition of saved power
profiles Pi, place it at the switching times ts and try to
minimize the error between the evolved power load and
the given total power load.

gamma distributed on-duration a normal distributed on-
duration. However, an appliance is manufactured with
the assumption, that it will consume a predetermined
amount of energy. The energy demand of an appliance
should not differ from manufactured appliance to appli-
ance. This assumption is more or less theoretical. In
practise, the energy demand varies from appliance to ap-
pliance. Accordingly, a realistic appliance model should
not have a constant power, because the power of any ap-
pliance varies within a special range [6]. An illustration
for the varying usage and power is shown in Figure 2.
Beside the variation of time and power, we also stressed
the fact of repeating and periodic appearance of appli-
ance, permanent power consuming appliances and appli-
ances not saved in a database. To show that also a sim-
ple optimization approach can solve the problem of ag-
gregated power profiles for miscellaneous appliances, we
introduce an evolutionary optimization approach named
evoNILM. The general scheme of the proposed algorithm
is shown in Figure 3 and is described in detail in the fol-
lowing sections.

Basis power profile

P

Tbasis

Normal 
distributed 

random usage
time Δt

Tbasis+Δt

random power magnitude ΔP
P+ΔP

Tbasis-Δt

Figure 2: Each appliance power profile is defined by its
power magnitude P and its base usage time ,tbasis. Due
to the fact that usage times are not constant in reality, we
vary the usage time by a normal distributed time vari-
able ,∆t, which is added/subtracted to/from the basis/
mean base usage time, tbasis or a gamma distributed time
(Γ(α = 2, β = 50)) variable, which is added to the base
usage time tbasis. Beside the usage, also the power is
diversified as we vary the power P with an additional
uniform distributed random variable, ∆P .

3 THE EVONILM ALGORITHM

The evoNILM algorithm can be divided into two main
stages: a pre-processing stage and the evolutionary al-
gorithm stage. The pre-processing stage is responsible
mainly for identifying predefined characteristics of the
total power load e.g., if repeating, periodic or permanent
power signals are occurring in the total power load. The
evolutionary algorithm stage is the main stage which per-
forms the optimization between the generated power sig-
nal of the evolved composition of appliances and the total
power load.

3.1 PRE-PROCESSING STAGE

The first step of the pre-processing stages is to check if
the total power load contains periodic or repeating sig-
nals 3. This is necessary because the knowledge of the
appearance of appliances with repetitive and periodic
characteristics is later used in the two new introduced
mutation methods. These two mutation methods are used
to improve the ability to detect appliances with repetitive
and periodic running properties.
The second step of the pre-processing stage is responsi-
ble for verifying if the total power load contains power
loads which are not known and thus are not saved in the
database. If these additional unknown loads, were also be
considered during the evolutionary optimization process,
the detection performance would decrease [7]. To over-
come this problem, we introduce checking for unknown
power loads. This occurs by processing the positive and

3A detailed description how the detection of repeating and periodic
appliance can be found in 3.2.
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Figure 3: General scheme of the evoNILM algorithm as
a flowchart

negative edges that occur in the total power load, fol-
lowed by a check to determine whether the detected pos-
itive and negative edges correspond to any in the database
saved power magnitudes. If positive and negative edges
appear in the total power load, which are not saved in the
database, the algorithm takes these edges and according
power value, pd and usage time, td between positive and
negative edges and withdraws the edge values, pd from
the total power load in the processed usage times, td.
The result of this pre-processing step is that the algorithm
uses a total power load of known power profiles and ac-
cordingly, becomes independent of additional unknown
power profiles. It tries to reduce the search space of the
algorithm with the aim of simplifying the optimization
problem.
In addition to appliances which consume their power by
alternately switching on and off, there exist appliances
which consume power permanently. This behavior of

permanent power consumption makes the optimization
problem very complicated and intractable. Thus, we in-
troduced the third and final pre-processing stage with the
aim of detection these permanently-occurring signals and
removing them from the observed total power load 4. In
detail, we perform an edge detection to find the first ris-
ing edge and compare the computed edge value with the
real power value of the total power load at the position of
the first rising edge. If these two values are different, this
indicates that a permanent power consumption is present
in the total power load. To ensure this assumption, we
calculate the difference between the edge value and the
total power load value and remove this value from the
whole total power load. If the produced difference signal
is at any point of the observation window greater than
or equal to zero, this indicates that a permanent signal is
present during the whole observation window. As a con-
sequence we withdraw the computed permanent power
from the total power load.

3.2 EVOLUTIONARY ALGORITHM

The main task of the evoNILM algorithm is the evolu-
tionary algorithm, which aggregates a random compo-
sition of stored power profiles Pi(t) to approximate the
total measured power profile P (t) in the best way like in
[7]. For this we use the following fitness function F :

F = −
∣∣∣∣P (t)−

Nb∑
i=1

pdi
· ai(t)

∣∣∣∣, (4)

where Nb is the number of appliances used and di is
the genome index5, which indicates which appliance ac-
cording to its database index, di (Figure 4) should be
used for each state switching vector, ai(t). Thus, the
closer the fitness is to zero the fitter a desired population
is. In the proposed evolutionary approach we used the
common evolutionary operators of uniformly mutation,
single-point crossover, elite selection and newly gener-
ated individuals per generation. To overcome the restric-
tion of the simple optimization approach of [7] we intro-
duced the following four mutation operators.

3.2.1 Time-Duration Mutation

Each appliance has its base usage time and can randomly
change the real usage time by a normal or gamma dis-
tributed additional time variable, ∆t. To give the al-
gorithm the ability to overcome the lack of knowledge
according to the additional random usage time ∆t, we

4It is assumed that all related appliance events are occurring in the
observation window. All on and corresponding off events are in the
observation window

5The appliance power profiles Pi(t) are stored in a database and is
accessible by its database index



introduce a mutation method for our evolutionary algo-
rithm, which creates normal or gamma distributed us-
age times. An illustration of the normal and gamma dis-
tributed usage time is shown in Figure 2. Depending on
the mutation rate, we randomly extend/reduce the usage
time by a normal or gamma distributed time variable to
approximate the real time of usage. The varying random
time ∆t is only saved in one specific population. There-
fore, for every new generation the random time of the
previous generation is used and updated according to the
time-duration mutation.

3.2.2 Power Magnitude Mutation

We introduced a probabilistic varying power magnitude
for our appliance model by changing the power magni-
tude according to a predefined tolerance scheme. The
power magnitude mutation adds to every stored power
magnitude in the database an additional power value,
∆P , which is randomly 6 generated within a predefined
tolerance percentage. The introduction of this mutation
method leads to an increase in the search diversity and
leads to an improvement in terms of fitness and detection
evolution. An illustration of the base power magnitude
and the additional power magnitude ∆P is presented in
Figure 2.

3.2.3 Repeating-Signal Mutation

According to the common usage of appliances, it very of-
ten happens that appliances are frequently and repeatedly
used during a given time window. Thus, we introduced
the repeating-signal mutation which helps to find and to
introduce repeating appliances into the evolution process.
More precisely, this mutation method tries to find rising
edges and stores the magnitudes of the found edges. If
the same magnitudes appear several times, the algorithm
saves the corresponding starting events for the repeti-
tive magnitudes, randomly creates a new appliance in-
dex and inserts this index at the saved starting events into
the current executed population. This process means that
the same appliance index is used at the stored repetitive
starting events. As mentioned in 3.1, we included at the
beginning of the optimization process a pre-processing
stage, which is responsible for finding out, if repeating
signals appear in the total power load and thus, whether
the repeating-signal mutation should be used or not.

3.2.4 Periodic-Signal Mutation

Nowadays, many appliances behave periodically. They
turn on and off at almost equally spaced intervals. Ac-
cordingly, the periodic-signal mutation tries to detect

6Uniformly distributed

these periodic occurring events and therefore, introduces
the same appliance index at equally spaced intervals.
More specifically, the algorithm tries to detect all rising
edges and calculates the time difference ∆tp between
each rising edge. These values of ∆tp’s are then com-
pared between each other, if one or more time differences
are repeated. If a ∆tp is repeated more than twice, the
associated rising edges and starting events are saved and
a randomly generated appliance index is inserted at the
saved starting events. As in the case of repetitive signal,
we also try to detect periodic signal at the pre-processing
stage to determine whether the periodic-signal mutation
should be used or not.
By introducing these four mutation methods the evolu-
tionary optimization algorithm can be improved and can
overcome many of the restrictions seen in [7]. In gen-
eral, the evolutionary algorithm can achieve a good op-
timization solution in reasonable time but if we use the
evolutionary algorithm to solve more complicated prob-
lems with a large search space, such as the load disag-
gregation problem with many different appliances, the
time taken to achieve a satisfying and reasonable solu-
tion increases. To surmount this problem, we attached
parallel evolution to our algorithm. More precisely, we
used a multiple-population evolutionary approach, where
ri populations are evolved separately as single evolutions
and exchange the best individuals between each other at
predetermined generation intervals. In our approach we
used a ring-topology of populations in such a manner that
each population acts as a single evolution and exchange
its best individuals, bi to the right-hand neighbor at pre-
determined time intervals. Thus, the bi worst individuals
are replaced by the bi best individuals of the left neigh-
bor. This behavior is propagated over the whole ring and
leads to an improvement of the fitness development and
to an increase in speed up of the algorithm according to
the new introduced population diversity. Finally, the par-
allel evolution 7 does not deliver just one population so-
lution, it provides r solutions, which correspond to the
size of the population ring topology.

4 EVALUATION SETTINGS

The evaluation of the proposed evolutionary algorithm is
based on MATLAB simulations, in which we simulated
10 randomly generated households with Nb appliances.
Each generated house has its own appliances with their
power profiles, Pi, which are randomly aggregated to
establish the total power load P (t) for every simulation
run. Appliances are randomly selected from a database

7For every population we used different evolutionary operators with
the exception of the the time-duration mutation and the standard evo-
lutionary operators such as crossover, uniform mutation and new indi-
viduals. If the used number of parallel populations is 4, we used half of
them with repeating mutation and the other half with periodic mutation
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Figure 4: Genome representation uses real values accord-
ing to the appliance index stored in the database. Fur-
thermore, the division of evolutionary operators such as
mutation, crossover, etc., are shown.

of size db = 25 and are defined by their power mag-
nitude, pi and their usage time ti. Thus, the appliance
power profiles can be seen as rectangular power signals,
which can be further varied in time and power magni-
tude. The base time tbasis, which corresponds to ti of
Pi, is varied by ∆t (Figure 2) and the power magni-
tude pi is uniformly increased by 5 − 20% of the basis
power consumption pi. However, we used an observation
window of 7200 data points for our simulation, which
can be seen as a time window of 2 hours for a day in
second time resolution. We also randomly generate the
used starting times ts to place the randomly chosen ap-
pliances in the observation window and to create a total
power load P (t). Moreover, we repeat this random gen-
eration of starting points for each household 10 times to
simulate 10 independent simulation runs for each gen-
erated house and household appliances. The composi-
tion of appliances stays the same and only the starting
times are changing for each of these 10 simulation runs
per household. Nevertheless, to create a properly func-
tioning evolutionary algorithm, the parameters of the al-
gorithm have to be fixed. In Table 1, the general param-
eters of the evolutionary algorithm, such as the mutation
rate and the specific parameters of our proposed evolu-
tionary algorithm are defined. The parameters were de-
termined empirically. In Figure 4 the genome represen-
tation and the division of the evolutionary operators in
one generation are shown. For the evaluation of our al-
gorithm we use the metric of the fitness behavior during
the detection process with the aim of seeing how accurate
the appliance detection is in the sense of fitness reached
and how fast (in generations) the total process is to find
a reasonable detection result. In contrast to the fitness
metric we also use a detection metric, where we eval-
uate the probability of detected appliances in the mean
of all simulation runs, which corresponds to a true pos-

Description Value range
Mutation rate :
-Evolutionary operator mu-
tation

0.1

-Repeating-signal mutation 0.1
-Periodic-signal mutation 0.1
-Time duration & power
magnitude mutation

0.1

Number of generations 100
Number of individuals 500

Table 1: Parameters used for the evolutionary algorithm
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Figure 5: Fitness trends for simple (SE) and parallel evo-
lution (PE) with varying instance number ri of parallel
evolutions and Nb = 7

itive probability. It compares the probability of appli-
ances correctly detected to total number of actual appli-
ances [1]. In [7] simple evolution (SE) was used. In this
paper we improved the algorithm behavior by a multi-
ple/parallel population (PE) approach. We used parallel
evolution with ri independent sub-populations and with
individual exchange to improve the detection and fitness
behavior of the algorithm. In Figure 5 we show the dif-
ferent performance results between simple and parallel
evolution under varying wanted appliances. In detail, we
used the appliance number Nb = [5, 9, 12] and ri = 4
parallel evolutions. It can be seen that the evolution pro-
cess of the parallel evolution improves its fitness trend if
the number of appliances is increased. This is also visible
in Table 2, where the detection probabilities for different
test cases are listed. For example, Nb = 9 with simple
evolution a detection probability of 79% can be reached.
This can be improved by the parallel evolution to a de-
tection probability of 92%. Beyond that, to evaluate our
new introduced mutation methods to improve the evo-
lutionary NILM algorithm we defined the test scenarios
time and power magnitude varying appliance evolution
and repeating and periodic appliance evolution. In the



Simulation case SE Pdet PE Pdet

NB = 5 99% 100%
NB = 9 79% 92%
NB = 12 55% 75%

Table 2: Detection probability for simple (SE) and par-
allel evolution (PE) with varying number of appliances
Nb = [5, 7, 9, 12]

following sections we are describing and outline these
scenarios and evaluate the performance of the evolution-
ary algorithm according to the achieved detection results.

5 EVOLUTION WITH VARYING USAGE
TIMES AND POWER MAGNITUDE

To vary the usage time of appliances we vary the base us-
age time of a saved appliance dependent on a normal or
gamma distributed time variable ∆t. For the normal dis-
tributed case we use the base time tbasis as mean value
with a variance of 75W as the varying time variable ∆t
and in the gamma distributed case, we increase the base
time tbasis by ∆t = Γ(2, 50). For the simulations we
presume to know on which distribution the time varia-
tion is based. Accordingly, with the knowledge of vary-
ing time instances we introduced a new mutation method
which also tries to improve the algorithm performance
also if the exact time of usage for a wanted appliance
is not known. In Figure 6(a) we show the fitness trend
for the cases with simple or parallel evolution with time
varying usage times and with/without time duration mu-
tation. We used normal and gamma distributed time du-
rations. It can easily be seen that the algorithm is heavily
dependent on the influence of varying usage times and
also on the usage time distribution. Thus, if the time
duration is normal distributed, the new mutation method
does not improve the detection behavior. Only the fitness
is increasing. The detection probability is even worse
than without time-duration mutation. In contrast, with a
gamma distributed usage time the detection behavior can
be improved from 46% to 66%. A futher improvement
is also possible with the use of parallel evolution instead
of simple evolution. As mentioned in the previous sec-
tion, appliances do not only differ in usage time, they can
also differ in their power magnitude. Accordingly, we
vary the power magnitude randomly with an additional
power value ∆p of 5% to 20% of the basis saved power
magnitude pi. To overcome and to improve the detection
performance we introduced the power magnitude muta-
tion and the enhancement can be seen in Figure 6(b) and
Table 4.

Simulation cases Pdet

SE, normal distr., no time-
duration mutation

63%

SE, normal distr., with time-
duration mutation

60%

SE, gamma distr., no time-
duration mutation

46%

SE, gamma distr., with time-
duration mutation

66%

PE, gamma distr., no time-
duration mutation

56%

PE, gamma distr., with time-
duration mutation

76%

Table 3: Detection probability with/without time dura-
tion mutation for simple (SE) and parallel evolution (PE)

Simulation cases Pdet

SE, no power magnitude
mutation

65%

SE, with power magnitude
mutation

72%

PE, no power magnitude
mutation

75%

PE, with power magnitude
mutation

89%

Table 4: Detection probability with/without power mag-
nitude mutation for simple (SE) and parallel evolution
(PE)

6 REPEATING AND PERIODIC APPLIANCE
ENVIRONMENT

In our households many appliances are used repeatedly
and periodically. Therefore, we introduced two mutation
methods to improve the detection abilities of the evo-
lutionary algorithm for these appliance types. In con-
trast to before, we now include repeating and periodic
appliances in the total power load P (t). In every simu-
lation run, we place the same appliance type into the ob-
servation window several times. Appliances, which are
repeatedly used, are usually heating appliances, which
consume power according to the hysteresis curve of the
thermostat of heating elements. Therefore, it is imagin-
able that an appliance is on longer at the starting time
than during subsequent operating times. However, in the
case of periodic appliances we place the same appliance
type with constant power magnitude pi and time duration
ti into the simulated total power load. The time differ-
ence from one starting event to the next starting event of
a desired appliance is equally spaced and the appliance
is therefore periodic. For every simulation run we used
Nb = 7, which corresponds to the used number of start-
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Figure 6: Fitness Evaluation for time varying and power magnitude varying appliance model

ing events. To clarify the effect of the newly introduced
mutation methods for repeated and periodic use appli-
ances, we used the single population approach instead
of the parallel population approach. For the repetitive

Simulation cases Pdet

2 appliances repeating, with
repeating mutation

88%

2 appliances repeating, no
repeating mutation

85%

appliance with 3 periods,
with periodic mutation

96%

appliance with 3 periods, no
periodic mutation

86%

appliance with 6 periods,
with periodic mutation

94%

appliance with 6 periods, no
periodic mutation

92%

Table 5: Detection probability with/without repeating or
periodic mutation for simple evolution (SE)

appliances scenario we choose to have 2 random power
profiles, which were placed into the desired observation
window twice. We used our evolutionary algorithm with
and without repeating-signal mutation in Figure 7(a) and
in Table 5. It can be seen that the fitness trend leads to a
faster result and the detection probability is improved. To
evaluate the periodic behavior of evoNILM we used one
randomly generated appliances with 3 or 5 periods. Just
as in the case of repeating appliances, we used Nb = 7.
We evaluate our algorithm according the achieved fit-
ness in Figure 7(b) and the detection probability in Ta-

ble 5 with and without the new mutation method. In the
case of 3 periods it can be seen that our proposed muta-
tion method yielded to an improvement from the fitness
reached as well as for the detection probability. This ef-
fect is also visible for the case of 6 periods. With the in-
troduction of these two mutation methods the algorithm
can be improved by adding information about the search
space (pre-processing stage) and by adding possible so-
lutions (repeating mutation method) to the algorithm.

7 CONCLUSION AND FUTURE WORK

In this paper we presented an evolutionary approach to
detect miscellaneous appliances based on their power
characteristics. The proposed algorithm is feasible for
detecting and identifying appliances, which behave per-
manently, repetitively and periodically. The appliance
can be described as on/off appliances with randomly dis-
tributed power demand and usage times. We showed
that the detection performance can be increased by intro-
ducing new pre-processing steps and mutation methods
and that by changing the single population approach of
the evolutionary algorithm to a multiple-population ap-
proach with individual exchange the performance of the
algorithm can be increased. With parallel evolution the
fitness reached by the evolutionary algorithm and the de-
tection probability can improved in the sense that a wide
range of appliances can be detected with a higher de-
tection probability. In future we wish to apply our al-
gorithm to real power profiles of appliances, where the
algorithm performance can be evaluated in reality in-
stead of a simulation-based environment. Further, we
plan to compare the evolutionary optimization approach
with other heuristic optimization techniques like particle
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Figure 7: Fitness Evaluation for repeating and periodic appliances

swarm optimization.
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