
Designing Swarms of Cyber-Physical Systems: the H2020
CPSwarm Project

Invited Paper

Alessandra Bagnato
Softeam R&D Department

Avenue Victor Hugo 21
Paris, France 75016

alessandra.bagnato@softeam.fr

Regina Krisztina Bíró
Search-Lab

Szeruskert Utca 19
Budapest, Hungary 1033

regina.biro@search-lab.hu

Dario Bonino
Istituto Superiore Mario Boella

Via Pier Carlo Boggio, 61
Torino, Italy 10138

dario.bonino@ismb.it

Claudio Pastrone
Istituto Superiore Mario Boella

Via Pier Carlo Boggio, 61
Torino, Italy 10138

claudio.pastrone@ismb.it

Wilfried Elmenreich
Universitaet Klagenfurt

Universitaetsstrasse 65-67
Klagenfurt, Austria 9020

wilfried.elmenreich@aau.at

René Reiners
Fraunhofer Institute for Applied

Information Technologies
Sankt Augustin, Germany

rene.reiners@�t.fraunhofer.de

Melanie Schranz
Lakeside Labs

Klagenfurt, Austria 9020
schranz@lakeside-labs.com

Edin Arnautovic
TTTech Computertechnik AG

Schoenbrunner Strasse 7
Vienna, Austria 1040

edin.arnautovic@tttech.com

ABSTRACT
Cyber-Physical Systems (CPS) �nd applications in a number of
large-scale, safety-critical domains e.g. transportation, smart cities,
etc. As a matter of fact, the increasing interactions amongst di�erent
CPS are starting to generate unpredicted behaviors and emerging
properties, often leading to unforeseen and/or undesired results.
Rather than being an unwanted byproduct, these interactions could,
however, become an advantage if they were explicitly managed,
and accounted, since the early design stages. The CPSwarm project,
presented in this paper, aims at tackling these kinds of challenges
by easing development and integration of complex herds of het-
erogeneous CPS. Thanks to CPSwarm, systems designed through a
combination of existing and emerging tools, will collaborate on the
basis of local policies and exhibit a collective behavior capable of
solving complex, real-world, problems. Three real-world use cases
will demonstrate the validity of foundational assumptions of the
presented approach as well as the viability of the developed tools
and methodologies.

CCS CONCEPTS
• Computer systems organization → Embedded and cyber-
physical systems; Robotics; • Software and its engineering
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→ Uni�edModeling Language (UML); Systemmodeling lan-
guages; Development frameworks and environments; Integrated and
visual development environments;
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1 INTRODUCTION
According to the NIST de�nition1, “Cyber-physical systems (CPS)
are engineered systems that are built from, and depend upon, the
seamless integration of computational algorithms and physical com-
ponents”. One of the distinctive characteristics of CPS is, therefore,
that they are more focused on control activities rather than on pure
software services. Although CPS are often simplistically de�ned as
embedded systems able to run software locally, their principal mis-
sion is di�erent from pure computation, and involves interaction
with the physical world, like e.g., in cars, medical devices, scienti�c
instruments, etc. The dynamics of such systems can evolve very fast
and are dependent on variations from the surrounding environment
or from other interacting systems.
1In the “SYNOPSIS” provided at https://www.nsf.gov/funding/pgm_summ.jsp?pims_
id=503286, last visited on March 07, 2017.
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CPS and Cyber-Physical Systems of Systems (CPSoS) are increas-
ingly playing the role of foundational building blocks for bringing
adaptive intelligence to processes and environments [30], in sev-
eral application domains ranging from Smart Mobility, to Smart
Health [34], Smart Cities and Smart Production [21]. Due to the
increasing pervasiveness of CPS, issues related to e�ective design
of solutions able to reach prede�ned goals �exibly, reliably and
adapting to changing surrounding conditions, become challenging
and worth of further investigation. While increasing the CPS adop-
tion results in increasingly mature solutions for their development,
a single, consistent, science of system integration for CPS has not
yet been consolidated. According to the ECSEL Strategic Innova-
tion Agenda and to the NSF Steering committee for Innovations in
Cyber-Physical Systems, the design of CPS is currently hampered
by the limited ability to design at a system-level. There are many
factors currently lacking in system-level design, such as:

(a) the near absence of formalized high �delity models for large
systems,

(b) insu�cient ways of measuring performance and
(c) inadequate scienti�c foundations (e.g., see [17] for an introduc-

tion on limitations on CPS modeling).

The “Cyber-Physical European Roadmap & Strategy” (CyPhERS)
EU project, which compiled the “Research Agenda and Recom-
mendations for Action” [30] in the CPS domain, identi�ed similar
challenges on the technical and scienti�c standpoints. In particular,
the absence of an integrated design approach, at the system level,
which would enable a better design of these systems is seen as one
of the biggest limitations to overcome in current CPS solutions.

From a foundational standpoint, individual theories allowing
formal description of the di�erent aspects of Cyber Physical System
design including physical, technical, organizational and human-
system interaction are available, at di�erent degrees of maturity.
However, such disciplines are not fully integrated in a common
systems theory. In other words, while methodologies, representa-
tions and tools exist for addressing single aspects of CPS design,
supporting to the whole design lifecycle is still an open challenge.

This challenge becomes particularly intriguing when involved
systems are modular, autonomous CPS, which given a bare hard-
ware can perform several di�erent tasks by locally collaborating to
reach an “emerging” behavior, which is much more than the simple
sum of single CPS functionalities.

In this paper, we introduce the CPSwarm approach for designing
complex herds of heterogeneous CPS systems that interact and
collaborate based on local policies and that collectively exhibit a
behavior capable of solving complex, real-world, problems. The
project, funded under the H2020 ICT-01 program of the European
Commission aims at de�ning a complete tool-chain, which starts
from models of CPS basic components, functions and prototype
behaviors, and enables the designer to: (a) set-up collaborative
autonomous CPSs; (b) test the swarm performance with respect
to the design goal (i.e., to evaluate the solution �tness against the
design requirements); (c) deploy solutions towards “recon�gurable”
CPS devices and Cyber Physical Systems of Systems (CPSoS). The
remainder of the paper is organized as follows: Section 2 provides
the context in which the project is deployed, describing state-of-
the-art approaches and similar initiatives both at the European

level and worldwide. Section 3 introduces the CPSwarm project,
with its aims and goals while, Section 4 better details the project
approach to design large-scale CPS. Section 5 describes the use cases
in which the solutions developed within the project will be tested
and the expected innovations in the respective domains. Eventually,
Section 6 draws conclusions and highlights next steps and expected
outcomes of the project.

2 RELATEDWORK
Relations to the current state-of-the-art at the academic research
level, and possible innovations, are manifold. They, in particular,
encompass modeling and design methods, and tools, deployment
tools and code generation support. The following sections better
detail the relevant related works in each of the cited areas and
de�ne the CPSwarm contribution in such domains.

2.1 Modeling methods and tools
Current research on modeling CPS shows a very active domain,
in which modeling is seen as one of the foundational approaches
for dealing with natural heterogeneity in CPS. By modeling a CPS
it is possible to e�ectively capture domain speci�c concepts and
requirements. Many modeling techniques have been proposed in
the CPS design community, including: meta-modeling and meta-
programming techniques, formal semantics such as denotational,
axiomatic or operational semantics, actor-oriented design approa-
ches, etc.

Model-Based Design (MBD), as an example, has been identi�ed
as a powerful design technique for CPS [14], [15]. In MBD, models
pass through all stages of: (a) design, (b) analysis, (c) veri�caton,
and (d) validation. Speci�cations of systems and their underlying
components are de�ned in form of models re�ecting the evolution of
the system. These models can be used for early design analysis. They
can help in separation of concerns, traceability, trace generation,
impact analysis, formal veri�cation, simulation and synthesis.

A large number of modeling languages have been adopted for
CPS modeling, addressing the underlying aspects, i.e., modeling
of physical processes and requirements management. A good sur-
vey was presented by the Columbus project [4], with the aim of
de�ning an interchange format for CPS design, covering languages
and tools like State�ow/Simulink2, Modelica3, Checkmate [32] and
Masaccio [12]. These languages/tools enable CPS modeling for all
design phases, including simulation and veri�cation.

More recently, high level languages such as UML [24], SysML [25]
and MARTE [23] have been exploited to model these complex dis-
tributed systems. However, none of these languages can singularly
address all the challenges related to CPS modeling. More speci�-
cally, the UML language, traditionally used to represent software
systems, de�nes the syntax of model diagrams; but it does not of-
fer any speci�c semantics for CPS modeling. The SysML standard
limits its applicability to aspects of requirements management [18].
Eventually, MARTE enables designers to de�ne non-functional con-
straints, only. In general, the complexity of CPS design demands

2Simulink - Simulation and Model-based Design. The MathWorks, https://de.
mathworks.com/products/simulink.html,last visited on march 09, 2017
3Modelica and the Modelica association, https://www.modelica.org/, last visited on
March 09, 2017
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for extended system models, analytical tools and simulation tools
along with suitable modeling languages [2, 20].

Among current solutions to model-based CPS design, few ap-
proaches exploit formal methods to assess the correctness of CPS
design and provide guarantees for speci�ed CPS properties. This is
particularly true in case of groups of CPS interacting together to
reach a prede�ned, high-level goal. As an example, Sun et al. [37]
use model checking to verify the correctness of composition in a
power grid CPS, while assuming that the individual components
work correctly. Using a decomposition approach, their system is
logically divided into smaller modules, which can be e�ciently
checked. Even at the single CPS design-level, formal methods might
be exploited to ensure consistency between designed architecture
and derived solutions. In this context, Bhave et al. [3] propose a
method for de�ning and evaluating consistency between architec-
tural views derived from di�erent heterogeneous models and the
base architecture. They, in particular, formulate the problem of
consistency checking as a typed graph matching problem between
the connectivity graphs of di�erent architectural views and the
base architecture of the system.

2.2 Design methods and tools
Traditional system design methods typically follow a top-down
approach. Designers usually start with a high-level speci�cation.
Then, they iteratively re�ne and enrich such models to �nally reach
a representation describing all components and interactions within
the system. This top-down design process is the basis for hierarchi-
cal system control structures. However, the design of distributed
non-hierarchical CPS requires a di�erent approach. One way to
design these kind of systems is to imitate the structure, and behav-
ioral patterns adopted in nature to face similar problems. The work
of Reynolds [28], for example, represents a prominent approach to
the problem, by creating a nature-inspired algorithm based on the
swarming behavior of birds.

Self-organizing systems, call for a di�erent kind of design method-
ology able to capture bottom-up processes, the emergent behaviors
and to somehow combine the micro-macro view of self-organizing
systems. Creating a library of emergent behaviors can be useful, but
limits the system design to a number of prede�ned templates. To the
authors’ knowledge, currently there are few, or none, straightfor-
ward methodologies to �nd the appropriate micro level rules that
result in the desired macro level behavior, although some steps were
already taken in this direction. Many proposed techniques stem
from the �eld of multi-agent systems and agent-oriented software
engineering[8, 10, 26, 35]. However, as explained above, a formal
design methodology must contain processes that revisit and itera-
tively re�ne the micro level behaviors in order to create a bridge
between local and global level behaviors [6]. The great majority
of works in this �eld describe swarming mechanisms, but do not
give answers how to apply them to achieve an intended technical
e�ect. Yet, one can collect existing, published, experiences as a pool
of design patterns in order to adopt them to engineer the desired
system. Such pattern collections have already been formulated, for
example by De Wolf and Holvoet [5], or by Sudeikat and Renz [36].

When designing large, parameter-heavy complex systems, man-
ual trial-and-error solutions[9] are often not e�cient or sometimes

not feasible. In this case, automated processes that systematically
test micro-level rules driven by some evaluation function based
on the desired global behavior become crucial. Since the search
space expands heavily with the number of possible local states and
interaction rules, an exhaustive search is simply not possible. One
viable approach for automated simulation-based search and design
of self-organizing systems would, for example, be using evolution-
ary methods. The main advantage of such algorithms is that they
can be applied to any problem where the quality of a candidate
solution can be directly measured, thus there is no need for any
internal knowledge about the simulated system. Moreover, such
algorithms gracefully support parallel execution and can cope with
the uncertainty of stochastic simulation models.

There are several examples of evolving the local rules of a self-
organizing system. Quinn et al. demonstrate the usefulness of evolu-
tionary algorithms to evolve cooperative behavior [27] by evolving
teamwork strategies among a set of robots. In the �eld of swarm ro-
botics, Nelson describes the evolution of cooperative systems with
ANN controllers for a team that plays “Capture the �ag” against
an opponent team of robots [22]. Fehervari and Elmenreich evolve
neural network controllers for a team of self-organizing soccer
robots [7]. Trianni presents several experiments where the con-
trollers of a group of robots were evolved to achieve a certain team
behavior [38]. Examples are not limited to robotic applications; Arte-
coni [1] applies evolutionary methods for designing self-organizing
cooperation in peer-to-peer networks.

2.3 Deployment tools and code generation
CPS modeling is not limited to representing and simulating CPS
and CPS behavior under operational conditions. It also involves
aspects related to modularity and scalability of actual CPS program-
ming and deployment. Indeed, CPS are located at the boundary
between the physical world, with its processes, qualities and mea-
sures, and the immaterial world, which permits to monitor, control
and direct physical phenomena involving the CPS solution. Lee [16]
discusses two complementary approaches for designing CPSs under
this stand point. The �rst approach, which is called “cyberizing the
physical” refers to wrapping software abstractions around physi-
cal subsystems. The second approach is called “physicalizing the
cyber” refers to endowing software and networking components
with abstractions, which are suitable for physical subsystems. As
the complexity of CPS increases, the challenges of modeling the
interaction between cyber and physical systems increase as well.
Hence, using these approaches helps in bridging their di�erences
for achieving more realistic modeling.

A number of tools and frameworks have been developed to ease
correct implementation and deployment of CPS. One of the most
di�used approaches is code generation, or synthesis. The tool con-
verts some high-level speci�cation of a CPS into an (intermediate)
implementation easier to run on the target platforms. Among the
relevant approaches Roy et al. [29] introduce a CPS design tool
named PESSOA for synthesizing controllers for CPS. It accepts a
CPS represented in form of a set of di�erential equations and au-
tomata. The output is a controller for the system that enforces the
given speci�cation. On the other hand, Martin and Egerstedt[19]
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discuss system tools for translating high-level CPS models into
executable code on physical devices.

Another very active area of research regards the automated
deployment of CPS programs. Hnat et al. [13] present a macro-
programming framework, which is called MacroLab, for program-
ming CPS. Using MacroLab, a user can write a single program
for the entire CPS. The program is then decomposed into a set of
micro-programs, which are loaded into each node.

3 THE CPSWARM PROJECT
The CPSwarm project positions itself in the domain of CPS system
design and engineering, and aims at providing tools and methodolo-
gies that pave the way towards well-established, model-based and
predictive engineering design methodologies and tool chains for
next generation CPS systems. It has been funded under the ICT01
H2020 program of the European Commission on “Smart Cyber-
Physical Systems” and it builds upon state of the art in CPS and IoT.
Among the several issues related to CPS design, CPSwarm aims at:
(1) bridging the gaps between currently available approaches and
methodologies, (2) providing a relevant subset of the glue toolchains
and layers which are currently missing in CPS design [11]. CP-
Swarm tackles the challenges identi�ed in Section 2 by establishing
a science of system integration in the domain of swarms of CPS,
i.e., of complex herds of heterogeneous CPS systems that inter-
act and collaborate based on local policies and that collectively
exhibit a behavior capable of solving complex, industrial-driven,
real-world problems. The CPSwarm consortium includes partners
from 6 di�erent EU countries and involves large, small and medium
enterprises and several research institutions. Due to the participa-
tion of enterprises, the main outcomes of the project are expected
to be readily usable in the CPS design process. Engineered versions
of tools and solutions developed within the project will likely be
exploited to improve the current market positioning of the involved
partners. Nevertheless, attention will particularly be devoted to the
open-source community and an transparent give-back approach
to result exploitation is already planned, including open source
release of core components and solutions.

3.1 Goals
The project research objectives are manifold and try to achieve
a good coverage of issues currently hampering the CPS design
domain. With particular reference to the previously discussed issues
and state-of-the-art, CPSwarm aims at providing the following
contributions.

Improved support of CPS design. CPSwarm aims at o�ering
a fully-�edged design and simulation environment, namely the CP-
Swarm Workbench, natively supporting iterative, computer-aided
design of complex, autonomous CPSs focusing on swarms of het-
erogeneous systems.

Extendable library of re-usable models for CPS. The CP-
Swarm Workbench will feature a shared library, namely the CP-
Swarm Library, specifying models of CPS subsystems, functions,
algorithms and communication systems. It encompasses hardware-
independent models (thus providing native support to interoper-
ability) for single CPS subsystems, behavioral / functional models
of both internal CPS subsystems and external services, and a library

of existing HW representations enabling deployment of designed
CPS on a selected set of heterogeneous systems. Mechanisms and
guidelines for extending and integrating the CPSwarm library in
CPS systems will be part of the project outcomes.

Reduced complexity of design work-�ow. By exploiting the
CPSwarm Workbench and Library, CPSwarm will enable design
and integration methodologies devised to reduce development and
integration e�ort and maximize re-use. This includes techniques
for easier, block-based design of CPS and methodologies support-
ing iterative re�nement of design choices through simulation and
comparison against the target performances. Code generation tools
will enable bulk and over-the-air programming and update of CPS
systems thus reducing dramatically the time and e�ort necessary
for CPS deployment, con�guration and monitoring. The consid-
ered Models library also includes models describing the interaction
between humans and CPS.

Extendable library of swarming algorithms. In order to sup-
port development of concrete CPS solutions, the CPSwarm Work-
bench and Library will not just focus on descriptive modeling as-
pects, but will include a set of reference, reusable algorithm solu-
tions. Two main aspects will be considered: (a) evolutionary design
of local CPS behavior controllers (algorithms, rules) which opti-
mize the CPS behavior with respect to prede�ned goals. This also
includes meta-heuristic design and applications, where needed;
(b) algorithms and tools for building swarms of CPS systems that
collaborate to reach higher-complexity goals.

Toolchains for CPS integration. Support for interoperability
and predictive-engineering inherently built within CPS models
is a necessary aspect to enable estimation and prediction of the
overall CPS Swarm behavior and performance, as well as reliable
integration with third-party CPSoS. At the same time, hardware
abstraction issues must be tackled to enable cross-platform CPS
integration and design patterns. At this purpose the CPSwarm
Model Library is complemented by a CPSwarm Abstraction Layer,
“isolating” generated artifacts from real CPS hardware.

3.2 Methodology
CPSwarm faces the challenge of e�ectively capturing the industrial
needs and the innovation demands about tool-chains to set-up
collaborative and autonomous CPS. In order to cope with such a
challenge, CPSwarm follows the hybrid research and innovation
methodology depicted in Figure 1.

The proposed methodology is built upon an iterative approach
tailored to better bridge the gap between requirement elicitation
and development activities. According to the methodology, the
process starts by collecting insight from several sources including
project-speci�c requirements from EU roadmaps and initiatives
and research achievements in the �eld of CPS and Swarm core
technologies, e.g. linked research activities, relevant standards, etc.

Inputs are collected through ad-hoc stakeholder workshops and
literacy research (market studies, EU and international research and
innovation road-maps, state-of-the-art surveys, etc.) and translated
into an high-level analysis of the system and applications require-
ments. The resulting knowledge, recorded in form of descriptive
reports is further analyzed through requirements engineering tech-
niques.
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Figure 1: The CPSwarm project methodology.

The Requirements Analysis and System Design step follows, pro-
ducing as outcome a �rst system design speci�cation together with
the corresponding set of requirements and “innovations”. As soon
as they are available, system requirements are translated and linked
into functions and fed into the CPSwarm Requirements and Innova-
tion Tracker.

The tracker is used to provide transparent access to requirements
to all analysts and developers involved in the projects both on the
status of the requirements (open, rejected or solved) and functions
(de�ned, developed or validated). When a su�cient number of fea-
tures and requirements are known, the System Development step
begins, using a distributed SCRUM [31] development methodology
and short agile iterations as shown in Figure 1, where features of
the CPSwarm system are identi�ed and selected to be implemented
at each cycle. Each short iteration produces internal releases of
SW/HW components, which are continuously integrated and de-
ployed in the System Integration and Deployment step.

Once the overall macro-components of the platform are available
and integrated together, an intermediate release of the CPSwarm
system is produced and the Experimental Demonstration step starts.
This is the �nal part in each long (yearly) iteration, named “phase”,
where the CPSwarm system is deployed in real-life settings to
demonstrate the identi�ed use cases.

4 DESIGNING SWARMS OF CPS
CPSwarm is deployed around the conceptual architecture shown
in Figure 2. A Model library collects formal representations of CPS
subsystems, CPS base functions, security recipes, behavior routines,
swarm and self-organization algorithms, human-to-CPS interac-
tion patterns, and forms the cornerstone upon which the project
is founded. The library, which for example could be based on, and
extend, the Modelio store4, will be one of the �rst, publicly avail-
able, model libraries for designing swarms of CPS. Building upon
models in the Library, the CPSwarm Workbench will enable CPS
engineers to collaborate and assemble model-based descriptions of
CPS systems, with humans in the loop.

4.1 Work�ow
More speci�cally, the CPS design work-�ow will be deployed in
three main phases, as follows.
4http://store.modelio.org, last visited on February 21, 2017.

Figure 2: The CPSwarm high-level architecture and concept.

4.1.1 Phase1: Model-Based Design. After identifying the core
CPS components needed for a solution, CPS engineers will exploit
a library of customizable behavioral routines and self-organization
algorithms (e.g., bird �ock, ant colonies, etc.) to set-up swarms of
CPS that self-organize to solve the target problem. The resulting
ensemble is functionally acting as a unique Cyber Physical System
of Systems.

Depending on the selected organization mechanisms, di�erent
inter-CPS communication means will be available, and connectivity
to higher-level middle-ware solutions will be supported, thus en-
abling integration in higher-level systems of systems. For example,
such an integration will provide means for setting-up the swarm
free parameters depending on the speci�c application e.g., changing
the area to be covered by a population of sensors, etc.

Throughout the CPS design, interaction patterns and guidelines
available in the model library will support engineers in identifying
and applying the most suitable interaction mechanisms between
humans and CPS system, fueling higher level of trust between users
and CPS. Safety and security concerns will also be addressed, both
under the standpoint of formal veri�cation of designed solutions
(e.g., by verifying generated SysML [18] artifacts) and under the
standpoint of threat modeling and countermeasures identi�cation.

The outcome of the �rst, model-based, design phase will be
a swarm (either homogeneous or heterogeneous) of completely
speci�ed CPS and their behavioral models.

4.1.2 Phase2: Predictive engineering. In the second phase, the
CPSwarm Workbench will enable advanced simulation of the over-
all emerging system behavior and evaluation of achieved perfor-
mances against goals and design constraints. This, in turn, will
enable engineers to check the degree of adaptation and �exibility of
devised solutions with respect to changing operating context (sim-
ulated). According to the predictive engineering principles, simula-
tion will include complex real data, and or hardware/human in the
loop solutions where needed. Aspects related to local (short-range,
between components of the same swarm) and global communica-
tion, security, etc., are just examples of the complex scenarios anal-
ysis tackled through the CPSwarm Workbench. Co-simulation will
be considered, where needed, by integrating a set of selected simu-
lation engines, which will allow simulating the di�erent CPS facets,

http://store.modelio.org
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properly. The FREVO (Framework for Evolutionary Design) [33]5,
OMNeT++6, ARGOS7, ROS8 and Gazebo9 are samples of engines
that will be taken in consideration.

A dedicated Simulators Integration Layer (SIL) will be designed
and implemented to decouple the CPSwarm Simulation and Perfor-
mance Prediction Workbench from engine-speci�c representations,
control commands and data models. Simulation results will be then
analyzed by a Fitness Computation and Performance Comparison
component to better evaluate the �tness of the solution with respect
to the foreseen goals.

As the design of swarm intelligence might be a challenging and
somewhat crafty process, several iterative cycles might occur before
reaching the best solution satisfying the overall goals, the initial
constraints, or e�ectively trading o� con�icting requirements. The
CPSwarm Workbench will be designed to support this iterative re-
�nement with semi-automated tools exploiting simulation results.
The Simulation Control and Design Optimization component will
be in charge of controlling the runs of the simulation environment,
through the Simulation Interface, and will support automatic recon-
�guration of the overall CPSoS description by changing algorithms,
behaviors or con�guration parameters. Multi-criteria optimization
techniques will also be considered for evaluating di�erent design
alternatives and iteratively progress towards the �nal optimized
solution.

4.1.3 Phase3: Bulk deployment and monitoring. The CPSwarm
Workbench does not limit itself to design time usage. On the con-
trary, it aims at positively a�ecting the overall CPS engineering
process by reducing the development time and total cost of own-
ership of designed CPS solutions. To reach this goal, CPSwarm
promotes a modular structure for CPS exploiting an abstraction of
lower level functionality to enable automatic, model-based, code
generation and deployment of the designed systems. The adoption
of automatic code generation approaches also helps avoiding the
introduction of errors in manual implementation of the software
components, thus removing ine�ciencies and reducing debugging
time.

CPSwarm de�nes a concept of modular CPS that is in line with
the approaches exploited in Eclipse Papyrus10, Modelio11 and other
similar IDEs. In this concept (depicted in Figure 3), a plain embed-
ded system is preloaded with a so-called CPSwarm Abstraction
Layer12, which provides the primitives (and run-time) needed to
activate/deactivate/control device-independent cyber-physical rou-
tines. Such routines have direct mappings to the characteristics
modeled at design phase. This direct correspondence permits to
generate code executable on the target CPS hardware and that, at
the same time, can be easily traced back to simulation and perfor-
mance evaluation outcomes. In other words, for each component
explicitly modeled during the design phase, a corresponding soft-
ware artifact will be generated and installed on target platforms,

5http://frevo.sourceforge.net, last visited on February 21, 2017.
6https://omnetpp.org, last visited on February 21, 2017.
7http://www.argos-sim.info, last visited on February 21, 2017.
8http://www.ros.org, last visited on February 21, 2017.
9http://gazebosim.org, last visited on February 21, 2017.
10https://eclipse.org/papyrus/,last visited on February 21, 2017.
11https://www.modelio.org,last visited on February 21, 2017
12Functionally similar to the SIL.

Figure 3: The CPSwarm modular CPS system concept.

exploiting the CPSwarm Abstraction Layer, and proper instrumen-
tation will be provided to measure the system performance during
real operations.

All the components hosted by the CPSwarm Abstraction Layer
are abstracted from the actual embedded system used to run the CPS
and might possibly be hot-swapped / loaded on CPSwarm compliant
devices. When it comes to deployment, the components need to
be translated to platform dependent libraries - ideally completely
automated. A small subset of target platforms13 will be addressed
in project demo scenarios (see Section 5), and its complexity might
vary depending on the available computational power, memory
and hardware resources.

The joint operation of CPS-independent modules and CPS-de-
pendent abstraction provides an unprecedented �exibility in CPS
deployment, as the same system can be easily re-purposed. More-
over, it dramatically reduces deployment and �eld-experimentation
time and costs, as the CPS swarm programming of di�erent systems
can happen almost in parallel and unsupervised. CPSwarm pushes
these capabilities to the limit by explicitly de�ning a Deployment
Tool-chain subsystem that handles automatic, over-the-air, bulk
update of heterogeneous CPS populations. Such update can involve
either single components, or the full CPS logic, even including some
core parts of the CPS Abstraction Layer (in this case we speak of
upgrades). Updates and upgrades can happen both o�ine, before
starting operations, or during mission execution, depending on
some external factors (e.g., security policies, norms, safety proce-
dures, etc.). This allows better reacting to changes in the swarm
surrounding environment and in contour conditions. Moreover, the
CPSwarm deployment tool-chain will incorporate components for
continuously monitoring deployed CPS, allowing for on-line evalu-
ation of the swarm performance in real scenarios and supporting
early detection of failures.

5 USE CASES
The actual usefulness of tools and methodologies developed in CP-
Swarm shall be proven in real-world scenarios, with variability
and hidden factors that are almost impossible to capture in purely
simulated environments. To this purpose, CPSwarm will demon-
strate the viability of the proposed approach on 3 complimentary,
yet di�erent, use cases targeted at: (a) swarms of (mixed) robotic
vehicles (e.g. Unmanned Aerial Vehicles (UAV) and rovers), (b) au-
tomotive CPS systems for freight vehicles and (c) swarm logistics.
All scenarios are characterized by the presence of heterogeneous
CPS interacting together and showing emerging behaviors di�cult
to predict with traditional approaches.

13prominently based on ROS, but not limited to.
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5.1 Surveillance, Search and Rescue
The �rst CPSwarm use case considers heterogeneous swarms of
ground robots/rovers and UAVs carrying surveillance taks for criti-
cal infrastructures like, e.g., industrial or power plants as well as
Search and Rescue (SAR) tasks. For surveillance, the consortium
partners envision applications of swarms for: (a) intrusion detection
(e.g., detection of unauthorized persons entering a restricted plant
area) or (b) follow and observe actions of unauthorized persons in
the plant. Whereas, in SAR applications, swarms can be exploited
for: (c) generating a situation overview of the disaster scene in case
of an industrial plant accident including real-time images (VIS, IR),
toxic and explosive gas leakage detection or (d) �nding of human
casualties or persons trapped in the disaster area. The gathered
information is used to help security personnel, �rst responders as
well as rescue teams to conduct their mission e�ciently.

The two application scenarios share common requirements: a
vast spatial area has to be inspected and information has to be
provided to the stakeholders (security personnel, rescue teams, etc.)
in real-time, especially in case of an incident. Swarms can reduce
the inspection/detection times compared to, e.g., single UAV/rover
applications. Especially in SAR a single minute can decide between
death and life. On the other hand, the inspection cycle time for
surveillance can be reduced considerably by enabling denser in-
spection (multiple drones).

The core of this �rst use case is a set of UAVs and rovers that
can act autonomously. They typically carry di�erent sensors (VIS
or IR cameras, microphones, gas sensors, etc.) and can commu-
nicate among each other (via WiFi, 4G or other communication
means). The whole ensemble operates as a self-organizing mixed
team where particular tasks for vehicles are not prede�ned at mis-
sion start but negotiated during mission execution. The swarm
needs to be highly adaptive to changes in the environment and can
act dynamically. Moreover, in contrast to fully centralized control,
the swarm can still operate even if the connectivity among vehicles
or with a base station is sparse.

The swarm mission itself is de�ned in a central operation center
in the beginning of the mission with a dedicated swarm de�nition
tool (mission planner) that de�nes the goals and behavior of the
swarm, thanks to the CPSwarm Deployment Toolchain. The central
station can additionally collect the sensor data and perform sensor
fusion and analysis in real time.

5.2 Autonomous Driving and Platooning
The second use case lies in the area of cooperating autonomous
driving vehicles connected over a kind of an electronic draw bar.
The leading vehicle acquires and calculates di�erent kind of infor-
mation for its own automated operation (e.g., from computations or
sensors) and sends such information to other vehicles in the swarm.
We can imagine a scenario where the leading vehicle prescribes the
actions and decisions (i.e. navigation, decision on take-over maneu-
vers, sequencing maneuvers, lane change etc.) for the follow-up
vehicle(s) that will make use of the leading vehicle actions. The
follow-up vehicle will need full autonomous driving capability and
environmental awareness as well, however they will follow the
leading vehicle in a preset distance even when they have to make
decisions, i.e. in case of lane change maneuver on their own. The

follow-up vehicles will also take over full control in case the lane
change needs to be interrupted for the complete swarm due to other
tra�c prohibiting to change lanes. This use case shall pave the way
concerning the �rst technical challenges to solve. The research in
the project will focus on the deterministic wireless networking
needed for such scenarios and how to model this real-time commu-
nication aspects on the swarm level. Another challenge is to create
and deploy applications developed using CPSwarm approach on
real-world automotive platforms such as AUTOSAR14.

5.3 Logistics Assistant
The SWARM Logistics Assistant use case involves robots, rovers
and drones that collaboratively perform opportunistic scanning
of a given warehouse. The involved robots are intended to assist
humans in a logistics domain. These assistive tasks include, e.g.,
joining forces to move a heavy obstacle from one place to another.
Robots involved in the scenario are designed to scan the entire area
of the warehouse and share the acquired information to update
a knowledge base (e.g., map) on the go. In addition to collecting
information about the maps of the entire area, the connected robots
will also be used for collecting additional information implicitly
e.g. room temperature, presence of humans, detection of in-path
obstacles, etc. Since the information is acquired collaboratively by
all the connected robots of the swarm, the current status of the
area is always up to date and the e�ort is always divided among all
members. As a starting point, each connected robot will be fed with
some default information e.g. map of the area. This information
will then be updated opportunistically on the go as the robots
perform their main tasks. The swarm logistics scenario is enabled
by the CPSwarm toolchain, and it is aimed at demonstrating the
viability and e�ectiveness of the model-based and predictive design
approach promoted by CPSwarm. In the scenario, the CPSwarm
Workbench will be exploited to design and test both the single
behaviors of involved robots, the foreseen interactions with humans
and the overall emerging features of involved robots acting in
swarms. The CPSwarm Simulation toolkit will, particularly, be
exploited to test reactions of the swarm to situations not encoded
and/or known at design time, also involving humans. This will
enable proof testing of the logistic assistant policies and behaviors
before deployment on the shop �oor. Thanks to the bulk deployment
tool developed in the project, any discrepancy or any additional
feature that might emerge during the experimentation will be easily
incorporated in the system design and re-programming of robots
will be performed seamlessly, with virtually no down times.

6 CONCLUSIONS & FUTUREWORKS
This paper introduced the CPSwarm project, highlighting the ad-
dressed challenges in the Cyber Physical Systems engineering do-
main. The key points of the proposed approach and the method-
ology adopted to reach the project goals have been described in
details, o�ering the reader a precise overview of the main project
goals and expected outcomes. Within the next 3 years CPSwarm
aims at achieving sensible gains in terms of better e�ciency of
design and deployment of CPS swarms able to collectively address

14https://www.autosar.orglast visited on February 21, 2017.
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complex tasks in several domains, from search and rescue to au-
tonomous driving.
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