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Abstract—This paper proposes a probabilistic technique that
enables a node to estimate the number of its neighbors that
fulfill certain criteria. The technique does not require any a priori
information about the network topology. Based on a query from
the estimating node, the neighbors send busy tones in a sequence
of time slots. Evaluating the fraction of empty slots, the querying
node can infer about its neighborhood. Mathematical analysis
and numerical simulations show how the estimation success and
accuracy depend on the available time period. Applications of
the method can be found, for example, in RFID systems and
medium access protocols.

Index Terms—Neighborhood estimation, slotted random ac-
cess, cooperative networks.

I. INTRODUCTION

Several algorithms and protocols in communication systems
assume that a node knows how many adjacent nodes it has.
Such neighborhood knowledge can be exploited to optimize
link-layer and networking functions, such as medium access,
leader election, and cooperative relaying (see, e.g., [1]–[3]). It
is actually beneficial in all problems where the node degree is
of interest. As a simple example, knowledge about the number
of competing nodes in Slotted-ALOHA [4] can be exploited to
derive an optimum channel access probability. From a more
general perspective, we might not be interested in the total
number of neighbors but in the number of neighbors with
a particular attribute (e.g., minimum battery level, storage
capability). In all cases, however, only the pure number of
nodes not their identities is needed.

The problem of estimating the number of neighbors has not
been addressed sufficiently in the literature. Mostly, the num-
ber of neighbors is gathered when addressing other problems,
where also the identity of nodes is of interest. Commonly, a
coarse neighborhood estimation is performed by overhearing
data transmissions, where all neighbors transmit periodically,
e.g., some dedicated Hello messages. However, such an
approach is not well suited for more specialized problems,
such as getting the number of common neighbors of a set of
nodes in a cooperative network, identifying backhaul nodes for
wireless sensor nodes whose energy levels are above a certain
threshold, or for time dynamic networks with expeditiously
changing neighborhoods. Furthermore, in dense networks, a
high network load would result if all nodes exchange data
messages. Collisions between message transmissions would
trigger several retransmission attempts, which worsens the
situation and makes it impossible to derive a tight bound for
the maximum time until the estimation can be performed.

The contribution of this work is a novel method for
neighborhood estimation. Based on probabilistic trials, it can

quickly estimate the actual number of nodes without any a pri-
ori knowledge of the network. The accuracy is a system design
parameter. The algorithm enables us to make an estimation
after each trial, which means that it can be also used as an
anytime algorithm [5], i.e., an algorithm that can be stopped at
an arbitrary time instant and still provides meaningful results.

The paper is structured as follows. Section II proposes the
neighborhood estimation technique. Section III evaluates this
technique. Section IV summarizes related work and highlights
the differences to our approach. Finally, Section V concludes
and gives an outlook to further research.

II. NEIGHBORHOOD ESTIMATOR

A node is interested in the number of its neighbors, either
the total number or the number of neighbors that fulfill certain
attributes, such as energy level, connectivity, or common
neighbors. Our approach to solve this task is as follows. The
querying node broadcasts a Query message which optionally
contains the requested attributes. Subsequently, a contention
frame consisting of s time slots starts, similar as in contention-
based medium access protocols. Each node receiving the
Query message and fulfilling the attributes transmits a busy
tone in each of the slots with a given probability p (Bernoulli
process). These tones just indicate activity on the channel
and do not convey any other information. The querying node
observes the channel occupation during the contention period
and infers from its observation the number of nodes.

A. Basic Design Issues
The node can in principle count the number of
• empty slots (no node transmits in this slot),
• non-colliding slots (one node transmits in this slot), and
• colliding slots (multiple nodes transmit in this slot).

If n is the actual number of nodes, the probability that there
is an empty slot is P0 = (1− p)n. The probability that there
is a non-colliding slot is P1 = n p (1 − p)n−1. Finally, the
probability that a collision occurs in a given slot is Px =
1−P1−P0. By counting the number of empty, non-colliding,
and colliding slots during a sufficiently large number of slots,
a node can estimate these three probabilities. Based on such
a probability, it can estimate n using the inverse functions of
the above expressions.

The following questions arise: Which of these slot types are
well-suited to estimate the number of nodes? Should the node
count all three slot types? Is one slot type more beneficial
in practice? To answer these questions, let us further analyze
these probabilities. Figure 1 illustrates them for a given access
probability p as a function of n.
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Fig. 1. Slot probabilities for p = 0.05 versus n

We observe that P1 first increases with increasing n, has
its maximum, and then decreases again. For given n, there
are in general two different values of P1, meaning that the
function is not injective. Thus, counting only the number of
non-colliding slots is impractical for estimating n.

In contrast, the probabilities P0 and Px are monotonic with
respect to n and can thus be inverted to get an unambiguous
value of n. Hence, in theory, both slot types enable us to
estimate n. In practice, however, in order to detect collisions,
the transmission of special codewords might be necessary.
This would in turn require a longer transmission time than
simple busy tones. Furthermore, due to capturing effects,
collisions could be interpreted as non-colliding slots. These
facts motivate us to focus exclusively on the number of empty
slots for estimating the number of neighbors.

B. Neighborhood Estimator Based on Empty Slots

The number of nodes n can be calculated from the empty
slot probability P0 and the slot access probability p using

n =
lnP0

ln (1− p)
. (1)

To estimate n, it is thus sufficient to estimate P0 and apply
it in (1). To do so, we count the number of empty slots e in
a frame with s slots. The relative frequency is

P̂0 =
e

s
. (2)

Applying the relative frequency definition of probability,

lim
s→∞

P̂0 = P0 . (3)

Thus, P̂0 is a good estimate for P0 if s is sufficiently large.

C. Success of the Neighborhood Estimator

After an observation period of s slots, we can obtain one
of the following three cases:

1) No empty slots (e = 0). If no empty slots occurred, an
estimate for n cannot be made using (1), because ln P̂0

with P̂0 = 0. The probability for this event is

P[e = 0] = (1− P0)s = (1− (1− p)n)s . (4)

The estimator can return a lower bound for n, given by

n̂l =
ln
(

1
s

)
ln (1− p)

, (5)

which is the largest n̂ that can be estimated with
the given number of slots s. To avoid this case, the
probability p must be decreased and/or the number of
observed slots s should be increased.

2) All empty slots (e = s). Also if each slot is empty, a
good estimate for n cannot be given. The probability
for this event is

P[e = s] = P s0 = (1− p)ns . (6)

For this case, the estimator can return an upper bound

n̂u =
ln
(
s−1
s

)
ln (1− p)

, (7)

which is the smallest n̂ that can be estimated with the
given s. To avoid this case, the probability p and/or the
number of observed slots s should be increased. Note
that e = s, also if n = 0. A way to detect this case is to
use a dedicated test slot with access probability p = 1.

3) Some empty slots (0< e< s). If some of the slots are
empty and some are non-empty, the estimator will return

n̂ =
ln
(
e
s

)
ln (1− p)

. (8)

as a successful estimate for the number of nodes n.
As can be seen, the parameters p and s determine the

success of the estimator. Clearly, we would like to maximize
the likelihood of the third case. We demand an estimation
success probability of

P [0 < e < s] ≥ Ω , (9)

where the threshold Ω is close to 100 %. This can be achieved
if p and s are chosen in a way that

P[e = 0] ≤ 1 + Ω
2

and P[e = s] ≤ 1 + Ω
2

. (10)

D. Accuracy of the Neighborhood Estimator

The relative error ε =
∣∣ n̂−n
n

∣∣ made by the estimator should
be below a desired threshold Θ with confidence α, i.e.,

P [ε ≤ Θ] ≥ α , (11)

where Θ and α are input parameters to the estimator.
For given p and s, the estimator will in general produce

different values of n̂ for the same n. It is of interest to
determine the distribution of n̂. The number of empty slots e is
binomially distributed with parameters P0 and s. If s is large
and P0 is neither close to 0 nor to 1, we can approximate
the binomial distribution by a normal distribution with mean
µ = s P0 and variance σ2 = s P0 (1 − P0). As a rule of
thumb, this approximation is accurate if the products s P0 and
s (1−P0) are larger than 5 [6]. Using the normal distribution
and the observation that (8) is a monotonically decreasing
function of e, and thus differentiable, we can follow the steps



of [7] (Example 6a.2.1) to show that n̂ follows a normal
distribution with mean E[n̂] = n and variance

Var[n̂] =
1
s
· 1− (1− p)n

(1− p)n ·
(

ln (1− p)
)2 . (12)

For the normal distribution the left hand side of (11) becomes

P
[
(1−Θ)n ≤ n̂ ≤ (1+Θ)n

]
= 2·Φ

(
Θ n√
Var [n̂]

)
−1 , (13)

with Φ (·) being the cumulative distribution function (cdf) of
the standard normal distribution. If we use (13) in (11) and
rearrange for Θ we obtain

Ψ (s) :=
Φ−1

(
1+α

2

)
·
√

Var [n̂]
n

≤ Θ . (14)

For given p, α, and n, we get a bound Ψ(s) on the relative error
ε, which is a function of s and guarantees P [ε ≤ Ψ(s)] = α .
Thus, to satisfy Ψ(s) ≤ Θ, the number of slots s needs to be
sufficiently high.

E. Choosing a Suitable Slot Access Probability
Following the discussion above, for given p and s, the

estimator will produce meaningful results only in a range of
operation [nmin, nmax], where the likelihood of no empty slots
and all empty slots is low. If the actual n is higher or lower, an
estimation may fail. Furthermore, there is a tradeoff between
the estimation success and quality on the one hand and the
required number of slots, i.e., the estimation delay, on the
other hand.

The goal is to determine a suitable value for the access
probability p that
• works in a given estimation range [nmin, nmax],
• achieves an estimation success probability of Ω, see (9),
• achieves an error threshold Θ with confidence α, see (11),
• minimizes the number of required slots s.
We choose an access probability that minimizes the differ-

ence between the bounds Ψ(s) for n = nmin and n = nmax:

pr = argmin
p

∣∣∣∣Var[n̂]n=nmin

n2
min

− Var[n̂]n=nmax

n2
max

∣∣∣∣ . (15)

From this, we obtain the required number of slots that
guarantees all above conditions:

s = max

( (
Φ−1

(
1+α

2

))2 · (1− (1− pr)nmin)

n2
min ·Θ2 · (1− pr)nmin · ln (1− pr)2 , (16)

5
(1− pr)nmax

,
5

1− (1− pr)nmin
,

ln
(
1− 1+Ω

2

)
ln ((1− pr)nmin)

,
ln
(
1− 1+Ω

2

)
ln (1− (1− pr)nmax)

)
.

Let us explain this expression. The first term represents the
necessary number of slots to achieve the requested estimation
accuracy for nmin. It is obtained by setting (12) into (14) and
solving for s. The s-value for nmax is the same due to the
way we have chosen pr. The second and third term of (16)

ensure the validity of approximating the distribution of e with
a normal distribution. Finally, the last two terms verify that
the estimation success probability is at least Ω.

III. PERFORMANCE EVALUATION

Let us now evaluate the proposed neighborhood estimator.
If not stated otherwise, we request an error threshold Θ =
10 % with confidence α = 95 %. Furthermore, we require an
estimation success probability of Ω = 99 %. A number of
nodes n is chosen; each of these nodes accesses a slot with
probability p for a duration of s slots; finally, the estimation
n̂ is made. This random experiment is repeated 5 000 times.

A. Evolution of the Estimation Quality over Time
In the first experiment, the estimator assumes a range of

operation from nmin = 100 to nmax = 200. The actual number
of nodes is n = 150. Figure 2 illustrates the sample average
of the estimated number of nodes n̂ and the 95 % confidence
interval as a function of s. The dashed line represents the target
error threshold Θ. The averaged n̂ reaches the real value n
quite fast. However, the 95% confidence interval gets narrower
only gradually over time. The accuracy is within the requested
margin after s = 637 slots.
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Fig. 2. Sample average of the estimated number of nodes with 95%
confidence interval, when n = 150. The dashed line is the estimator’s target
error range. Results are based on 5 000 samples for each given slot number.

Figure 3 illustrates the evolution of the bound Ψ(s) for
the relative error (solid line). The dashed line is the intended
error margin Θ. To verify the concordance of simulation
and mathematics, we compute at each slot an estimate Ψ̂(s)
for Ψ(s) by using (14) but replacing n by the averaged
estimations n̂ and replacing Var [n̂] by the sample variance
of the estimations. The values Ψ̂(s) are shown as crosses.

B. Robustness to Incorrect Estimation Range
The question arises as to which performance will be

achieved if the actual number of nodes n is out of the
estimation range assumed by the estimator, i.e., either below
100 or above 200 nodes. The estimation process provides a
valid estimate (some empty slots) for n = 10 nodes, but the
error is about 30 % after 637 slots, and more slots would be
needed to achieve a better estimation. We also studied the case
for n = 1 000 (not shown in figure). Here, the variance of the
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Fig. 3. Bound Ψ(s) of the relative estimation error ε.
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Fig. 4. Estimation success probability P [0 < e < s]

estimated values is almost zero for the chosen p and when
s < 650. The reason for the low variance is that empty slots
occur very rarely for the used access probability.

Figure 4 shows the estimation success probability
P[0 < e < s] over time for different n values. For all values
except n = 1 000, the success probability approaches 100 %
within 100 slots, indicating that meaningful statistics can be
collected and the estimation process is successful. The success
probability for n = 1 000 nodes is nearly zero, due to the p
implied by the given setting. Only at around 600 slots the
curve starts increasing, and many more slots are required to
obtain valid estimations.

C. Choosing an Appropriate Estimation Range

Table I gives some examples for the number of slots s
required to estimate n assuming a certain estimation range
[nmin, nmax]. An error threshold Θ is requested with a
confidence of α = 95 %. The estimation success probability is
Ω = 99 %. The results hold for an arbitrary number of actual
nodes n, as long as n ∈ [nmin, nmax].

The number of required slots depends on the estimation
range [nmin, nmax] assumed by the estimator. Clearly, the
smaller this interval is, i.e., the more a priori information we
have about the approximate number of nodes, the faster the
estimation can take place. We also observe that s just depends
on the fraction η = nmax/nmin for a given accuracy. For

TABLE I
REQUIRED NUMBER OF SLOTS TO ESTIMATE n ∈ [nmin, nmax]

nmin nmax Θ s time
1 10 10% 1210 10.9 ms
1 10 20% 305 2.2 ms
1 100 10% 6094 54.8 ms
1 1000 10% 45843 412.6 ms
1 1000 20% 45843 412.6 ms
1 10000 10% 585830 5272 ms

10 100 10% 1210 10.9 ms
100 1000 10% 1210 10.9 ms

1000 10000 10% 1210 10.9 ms
100 200 10% 637 5.7 ms

instance, an estimation between 1 and 10 nodes requires the
same number of slots as an estimation between 100 and 1 000
nodes. This insight is generalized in Figure 5, which depicts
the number of slots s as a function of η.
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Fig. 5. Number of slots s required to estimate n as function of η =
nmax/nmin. An error threshold P [ε ≤ 10 %] ≥ 95 % and an estimation
success probability of 99 % is requested.

This fact enables us to draw some conclusions for the design
of a time-efficient estimation process. If a large range of
operation is needed, it is inefficient to use a large interval
of [nmin, nmax] as input to the estimator. It is better to apply
multiple rounds of estimation with smaller intervals.

For example, an estimation process in the range [1, 10 000]
requires more than 1/2-million slots. If we split up the esti-
mation process into four rounds — the first round with [1, 10],
the second with [10, 100], the third with [100, 1 000], and the
fourth from [1 000, 10 000]) — the number of required slots is
reduced to s = 4 · 1 210 = 4 840. This can be done statically
(without feedback from the querying node) where each node
automatically changes its precomputed p-value after each 1210
slots to cover the next higher range. If there is some a priori
knowledge about the number of nodes and a suitable η can be
determined, it is not necessary to scan the full range.

We now ask: What is the impact of the required error
margin Θ on the number of slots? Comparing row 1 and 2



of Table I, we observe that a larger margin can reduce the
required number of slots. Comparing row 4 and 5, we observe
that the number of slots does not necessarily decrease with
increasing Θ. It depends on the overall setting as to which of
the terms in (16) determines s.

Finally, let us briefly discuss how much time is needed in
practice to perform an estimation. Let us give an example
using the standard IEEE 802.11g for wireless communications.
The column named ‘time‘ in Table I shows the duration of
an estimation attempt assuming a slot period of 9µs. In this
period, an IEEE 802.11g interface can switch from transmit to
receive mode and detect channel activity in its reception range.
Although the number of required slots is high, the estimation
time is small since no data needs to be transferred during slots
beside detectable busy tones.

IV. RELATED WORK

Kodialam et al. [8] introduce methods for Radio Frequency
Identification (RFID)-readers to estimate the number of tags
in their range. Tags choose uniformly randomly a slot in a
frame and transmit during this slot a message with a certain
probability provided by the reader. The reader counts the
number of empty and collided slots and uses these statistics
to estimate the number of tags. The reader updates the trans-
mission probability for the tags based on previous results and
initiates a new contention frame until a certain accuracy is met.

Howlader et al. [9] apply the idea of [8] to underwater
communications. Due to capturing effects they use only the
frequency of empty slots to conclude on the number of
neighbors. They infer from colliding slots and slots with single
transmissions to node distributions.

Krohn et al. presents in [10] the idea to use jamming signals
(transmitting noise) to exchange data in wireless networks. The
authors motivate their idea by the fact that the overhead,e.g.,
sophisticated coding or synchronization preamble, for trans-
mitting single bit information, e.g., yes-no answers, can be of
magnitudes higher than the actual information itself.

The method of linear counting, presented by Whang et al.
in [11], uses a probabilistic algorithm in order to estimate the
cardinality of a column, that is the number of unique values
in a column of a relation of a database. Likewise as in our
approach, they analyze the number of empty slots in the hash
table to infer about the cardinality.

Among these works, [8] is most related to our proposed
method. However, there is a significant difference since the
querying node in our method does not have to give any
feedback after each frame. This is possible since our method
does not require an update of the transmission probability.
Furthermore, by exploiting only the empty slot statistics, there
is no need for signaling overhead that would allow to detect
collisions. On this account nodes in the estimation process
do not need to transmit any information besides simple busy
tones, which allows for a faster measuring phase and, thus, a
quicker estimation.

V. CONCLUSIONS

In this paper, we have introduced an approach for estimating
the number of neighbors, optionally, with a particular property,

of a given node. The concept is based on a contention-based,
probabilistic estimation method. Due to its low overhead, the
proposed method is an attractive approach within wireless
protocols. Possible applications are MAC protocols, relay
selection algorithms, and sensor network coverage estimations.

In the implementation we propose the use of busy tones
which allows for very short communication slots and thus for
a fast execution of the estimation algorithm. We have shown
that there is a tradeoff between the number of used slots and
the accuracy of the estimation.

An important lesson learned is that without a priori infor-
mation of the neighborhood or any feedback mechanism from
the querying node, it is more efficient to use a set of different
access probabilities than a single one to estimate a big range
of potential neighbors.

In a further step, we plan to split the estimation process
in two phases. In the first phase, we plan to cover the whole
range with low accuracy and coarsely estimate the number
of neighbors. This result is used in a second estimation
round with smaller range to increase the accuracy. We believe
that this method will reduce the required number of slots
significantly while keeping the required feedback small.
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