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Abstract---Smart metering and fine-grained energy data are
one of the major enablers for the future smart grid and improved
energy efficiency in smart homes. By using the information
provided by smart meter power draw, valuable information
can be extracted as disaggregated appliance power draws by
non-intrusive load monitoring (NILM). NILM allows to identify
appliances according to their power characteristics in the total
power consumption of a household, measured by one sensor,
the smart meter. In this paper we present a NILM approach,
where the appliance states are estimated by particle filtering (PF).
PF is used for non-linear and non-Gaussian disturbed problems
and is suitable to estimate the appliance state. On/off appliances,
multi-state appliances, or combinations of them are modeled by
hidden Markov models (HMM) and their combinations result in a
factorial hidden Markov model (FHMM) modeling the household
power demand. We evaluate the PF-based NILM approach on
synthetic and on real data from a well-known dataset to show
that our approach achieves an accuracy of 90% on real household
power draws.

Index Terms---Particle filter, load disaggregation, non-
intrusive load monitoring, hidden Markov model, factorial hid-
den Markov model, state estimation

I. INTRODUCTION

The smart grid aims to improve the current grid to be more
efficient, reliable, and to support sustainable energy sources.
Modern smart meters provide fine-grained demand information
of households where the consumers not only gets the overall
cost of his/her consumption, future consumers of energy will get
the possibility to see which amount of power is used at which
point in time [1]. This will give the consumers the opportunity
to establish and to develop an energy-aware behavior, which
accordingly can lead to a reduction of the energy demand
as well as for the energy costs [2]. Different studies [2, 3]
showed that 20−40 of the overall consumption of a country is
determined by the domestic household consumption. Improving
the energy awareness on household level is one of the major
issues in future energy research. Smart meters are a key factor
to support and improve the future smart grid.
Smart meters provide the possibility to show the consumers
not only when and what quantity of power is consumed, it is
also possible to provide information about which appliance is
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consuming which amount of power at which time. Therefore,
the household energy demand is disaggregated to individual
appliances, which additionally can lead to energy savings of up
to 12% through a real-time energy feedback on appliance level
[2]. One possible way to provide energy data on appliance level
would be to equip each device at home with a metering and
monitoring unit, but this approach comes with high acquisition,
installation and communication costs. Another approach based
on a single sensor monitoring the overall energy consumption
of a house1 on the grid connection point was introduced by G.
Hart [4] and was designated firstly under the name nonintrusive
appliance load monitoring. Recently, the terms non-intrusive
load monitoring (NILM) and load disaggregation are used in
the same context as the term proposed by Hart and are used
synonymously in this paper. NILM aims to identify appliances
according to the appliance power characteristics. Different
appliance types such as refrigerators and water kettles have
different power characteristics. Some appliances consume their
power in an on/off switching manner whereas others consume
the power in a continuous manner according to the load [5].
NILM approaches use this information with smart algorithms
and techniques to identify and classify single appliances in the
total power load. Until now, a variety of NILM algorithms
were proposed but no approach could solve the disaggregation
problem in all its diversity. Zeifman in [6] suggested that a
NILM approach should fulfill the following requirements to be
able to contribute positively for energy efficient management
systems and to solve the problem of aggregated power profiles:

• The selected feature should be the active power sample
at 1 Hz.

• The minimum acceptable accuracy of the algorithm is 80
to 90%.

• No algorithm training should be necessary.
• The algorithm should perform in real-time.
• The method should be scalable in the sense of robustness

and number of used appliances up to 20 to 30 devices.
• The types of used appliances should be diverse. It

should work for the following appliance types [5]: on/off
appliances, multi-state appliances, continuous consuming
appliances and permanent consuming devices.

Accordingly, we claim that a modern and novel load disag-
gregation algorithm should fulfill the presented requirements
due to its applicability with modern smart meters and due to
a simplified computational effort. The approach we propose
is based on the work in [7]. It is unsupervised and contains

1The household demand is the aggregated power demand of all used
appliances in the household.
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appliance models based on HMM. We model our household
consumption using the FHMM. The problem of disaggregating
aggregated appliances is computationally complex and suffers
on non-linearity if instead of on/off and multi-state appliance,
non-linear appliances such as a drill are used. It suffers
from non-Gaussian noise according to appliances which have
activities not consciously noticed or where the existence
of the appliance is not known. To solve the problem, the
Viterbi algorithm [8] could be used to compute the inference
of the HMM. Nevertheless, in the case of an FHMM, the
Viterbi algorithm is no longer usable for computing the
inference. Therefore, approximation methods such as Gibbs
sampling [9] should be applied. Recent NILM approaches
which are stressing this topic are based on approximating
FHMM interference by Kolter [10] or make use of structural
variational approximation methods by Zoha [11]. The work of
Zoha uses several appliance features such as active, reactive
power. Our proposed approach is based on simple active power
features in 1 second granuality. This supports a wide range
of state-of-the-art smart meters. However, we propose the
well-known estimation approach of sequential Monte Carlo
or PF to estimate disaggregated appliance states. PF is a
suitable approach for state estimation problems with non-
linear behavior and non-Gaussian noise in different areas of
application such as industrial systems [12]. We show that PF is
an alternative to current proposed NILM solutions which meets
the requirements identified by [6]. We evaluate our approach
on synthetic household power draws to show the ability of
the algorithm to detect appliance states of up to 18 different
appliances and we test the approach on the well-known REDD
data set [13] to make the proposed approach comparable and
real-world tested. The remainder of this paper is organized
as follows: In Section II, we describe how an appliance and
how the total household consumption is modeled by the HMM
and the FHMM. In Section III, we provide information about
basic knowledge of particle filtering and how particle filtering
can be used to estimate appliance states using measured data,
followed by Section IV, which explains how the evaluation of
the proposed approach is established, which evaluation metric
is used and which test scenarios are evaluated. Moreover,
Section VI shows the results of the proposed algorithm based
on the evaluation mechanisms defined in Section IV. Finally,
the proposed approach and the achieved results are discussed
in Section VII, related work is presented in Section VIII and
we concluded this work in Section IX.

II. HOUSEHOLD AND APPLIANCE MODEL

The load of a household is characterized by the power
profiles of household’s appliances. Thus, the total power load
is the aggregated sum of power profiles, where each appliance
is modeled by a HMM and the total power consumption is
modeled by FHMM. In the following, we describe in detail
how the appliance and household model is generated and
established.
To model the time series behavior of an appliance we describe
each appliance as a HMM [14]. An HMM is probabilistic
graphical model describing time series as a Markov model in
which the states are not directly observable. The state of an
HMM are characterized by a probability distribution function.

States cannot be directly observed, but can be estimated
from the available measurements. The HMM model has n
hidden states s = {s1, . . . sn} as well as a transition matrix
A = {ai,j ≤ i, j ≤ n} representing the state transition from si
to sj . In detail, aij = P (xt+1 = sj | xt = si)), where aij > 0
and

∑n
j=0 aij = 1. The terms xt are the states observable at

each time slice t, which represents the power consumption of
an appliance in a particular state. The HMM of an appliance is
a discrete-time model, because the observed time T is separated
into equally spaced time slices t. Furthermore, an emission
matrix B must be defined for the HMM, which represents a
symbol in an actual state. In the appliance model, the emission
matrix shows the possible power values in each state of an
appliance. Finally, the initial probability π = P (x1 = si) must
be defined for the HMM. The vector z = {z1, z2 . . . zt} is the
result of the hidden states x = {x1, x2, . . . xt}, where the next
state of the HMM is dependent on the HMM’s current state
and is independent of past states. This is the Markov property
P (xt+1 | xt, xt−1 . . . x1) = P (xt+1 | xt). In Figure 1, an
example for a general model of an on/off appliance model to
generate the hidden states is shown. In this work we consider
on/off devices and multi-state appliances with several power
states. Thus, the appliances are dependent on more than two
different states and accordingly, the parameter matrices of the
HMM {π,A,B} grow by the number of states n. To establish
a desired appliance type such as a standby device, the definition
of A and B is the crucial task of the appliance model design.
The two matrices A and B have to be learned online or offline
with or without knowledge about the HMM. The knowledge of
the HMM includes for example information of the appliance
structure (such as an on/off appliance) or information about a
generic appliance structure which is refined during operation
time [15]. In this paper, A and B have been selected either
randomly in a predefined range or based on learned models
from measured appliance power profiles.
The household power profile can be observed as the ag-
gregate power profile of N different appliances such as
Y = {y1, y2, . . . yt} and is generated by the state sequence
of x = {x(1), x(2), . . . xN}, which is the superposition of the
appliance states at each time slice x(n) = {x(n)1 , x

(n)
2 . . . x

(n)
t }.

The household model is based on an FHMM. An FHMM is
commonly used to model multiple independent hidden states
and to decrease the number of parameters in contrast to using
a standard HMM with a large set of operational states. The
general structure of an FHMM is represented in Figure 1.

III. STATE ESTIMATION

In the following sections, we discuss background information
on particle filtering and how to apply particle filtering to the
problem of appliance state estimation. We start with Bayesian
estimation, explain the shortcomings of using Bayesian esti-
mation with non-linear problems and non-Gaussian noise and
present the particle filter as a solution for this problem.

A. Sequential Bayesian Estimation

According to the Bayesian approach, the state of a physical
system xt at time t can be inferred from the probability density
function (PDF) of a state given all the measurement y1:t until
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Fig. 1: In this figure the appliance models for on/off or multi-state appliances, a sketch of the FHMM model and the power
draw of the aggregated power trends for 3 appliances are presented.

time t. The sequential Bayesian estimation has two primary
steps at every time instance t:

• State prediction predicting the state as the expectation of
the prediction PDF

p
(
xt | yt−1

)
=

∫
p
(
xt−1 | yt−1

)
p (xt | xt−1) dxt−1, (1)

where p
(
xt−1 | yt−1

)
is the posterior PDF available from time

t-1 and p (xt | xt−1) is the state transition probability given by
the system process model.

• Measurement update where upon receiving the measure-
ment, the predicted state is computed as expectation of
the posterior PDF

p (xt | yt) =
p
(
xt | yt−1

)
p (yt | xt)∫

p
(
xt | yt−1

)
p (yt | xt) dxt

, (2)

where the p (yt | xt) is the likelihood PDF given by the
measurement model of the system. The Kalman Filter (KF)
[16] can be used to solve the integrals in Eq. 1 and Eq. 2 if the
system is linear with additive white Gaussian noise. In contrast,
if the physical systems are non-linear, then these integrals are
intractable. Often, non-linear state estimation methods such as
PF are used to approximate these integrals.

B. Particle Filter (PF)
PF calculates weighted particles or Monte Carlo samples

to approximate the PDFs as in Eq. 1 and Eq. 2. Particles are
propagated over time to obtain new particles and the weights,
resulting in a series of PDF approximations. The approximation
of the PDF becomes more accurate with an increasing number
of samples. In many cases, the sampling of the required PDF is
not possible. In such cases, the samples drawn from a different
PDF (importance PDF) are used to approximate the required
PDF. It is called importance sampling. Let

{
xi0:t,wi

t

}Np

i=1
be the

set of random samples, xi0:1, drawn form the importance density
q (x0:t | y1:t) and their associated weights, wi

t, for 1 . . . Np

where Np is the number of particles. Then the required PDF
can be approximated as

p (x0:t | y1:t) ≈
Np∑
i=1

wi
tδ
(
x0:t − xi

0:t

)
, (3)

where δ is the unit dirac function and the weights are defined
as

wi
t =

p
(
xi
0:t | y1:t

)
q
(
xi0:t | y1:t

) . (4)

In the case of sequential importance resampling (SIS) [16], the
samples and corresponding weights

{
xi0:t−1,wi

t−1

}Np

i=1
which

approximate p
(
x0:t−1 | y1:t−1

)
are known at time t. If the

importance density for approximating p (x0:t | y1:t) is chosen
in such a way that

q (x0:t | y1:t) = q (xt | x0:t−1, yt) q
(
x0:t−1 | y1:t−1

)
, (5)

then the new samples xi0:t ≈ q(x0:t|y1:t) can be obtained by
augmenting the existing samples xi0:t−1 ≈ q(x0:t−1|y1:t−1)
with the new state xit ≈ q(xt|x0:t−1, y1:t). The corresponding
weight update equation is given as

wi
t = wi

t−1

p
(
yt | xit

)
p
(
xi
t | xi

t−1

)
q
(
xit | xi0:t−1, yt

) . (6)

Now, the required PDF at time t can be approximated as

p(x0:t|y1:t) ≈
Np∑
i=1

wi
tδ(xt − xi0:t). (7)

However, the SIS algorithm suffers from the degeneracy
problem in which all but a few particles have negligible
weights. Due to the degeneracy, large computational effort
is expended for updating the particles with less contribution
to the approximation of the required PDF. One solution to
overcome degeneracy is resampling. The resampling process
eliminates particles with negligible weights by replacing
them with particles with large weights

{
x∗i
0:t,w∗i

t

}Np

i=1
. Several

resampling techniques are proposed in [16]. Then, the PDF
can be approximated as

p (x0:t | y1:t) ≈
Np∑
i

w∗i
t δ
(
xt − x∗i

t

)
. (8)
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The PF algorithm is given as: At time t,
{

x∗it−1,w∗i
t−1

}Np

i=1
are

known. The new samples are generated by

xi
t ∼ p

(
xt | x∗it−1

)
|Np
i=1.

The weights are updated by

wi
t = p

(
yt | xit

)
|Np
i=1.

Resampling: The particles are resampled by using the auxiliary
resampling [16] as{

x∗it ,w
∗i
t

}
|Np
i=1 = Resampling

{
xit,w

i
t

}
|Np
i=1.

The state estimate is given by the sample mean of the
resampled particles xi∗t .

C. Particle Filter based Load Disaggregation - PALDi
PF is an alternative choice to disaggregate power loads for

several reasons. Firstly, to model appliances and their usage in a
realistic way, a probabilistic modeling method such as a HMM
is necessary. To infer the most probable state of the HMM for
each appliance, the posterior density of the whole appliance
state space has to be estimated according to the observation.
This could be estimated online by particle filtering (PF). The
advantage of PF in the sense of aggregated power loads is the
fact that PF can handle large state spaces as in the case of
several appliances with multiple operation states. Moreover, PF
could be used as an approximation technique for the FHMM.
Secondly, on/off and multi-state appliances behave in a linear
way whereas a continuous behaving appliance such as a drill or
dimmer show non-linear behavior. This motivates the usage of
PF to make the proposed NILM approach usable for all kinds
of appliance types. Third, the appliance model generated by

the HMM and household power consumption established by
the FHMM suffers from non-Gaussian noise. In particular, the
used appliance could suffer from noise due to inaccuracies as
well as the aggregated power consumption could be disturbed.
Considering the aggregated power consumption, all appliance
and corresponding power draws are regarded as non-Gaussian
noise if these appliances are not known by the estimation
process. In detail, each HMM represents an appliance with
its hidden appliance states xt and its recognizable power
consumptions as observation value of the HMM. For each
HMM it is necessary to describe offline the structure, the
transition matrix and the observations. All appliance HMMs
are conducted by the FHMM where all hidden appliance states
of the HMMs are aggregating their power consumptions to
the total household power consumption. The total household
demand is represented by the observation of the FHMM. The
PF is used to estimate the posterior density of the FHMM
according to the appliance models and the observed household
power consumption. The output of the PF are power values
for each appliance which are aggregated at each point in time.
The PF has the characteristic to randomly adjust the estimated
power observation for each appliance in predefined ranges.
The reason for that is to estimate and to compensate appliance
inaccuracy in the appliance power consumption. However, the
PF itself is not providing the information in which state an
appliance is operating, it delivers power values which are given
to a decision making process. The decision making process has
knowledge of the power demand of each appliance operation
state. It decides accordingly in which state each appliance is
at each point in time by a simple thresholding approach.

IV. EVALUATION SETTINGS

In the following, the evaluation settings for the simulations
on synthetic data are described and the evaluation metric for
proposed approach is defined.

A. Settings on Synthetic Data

To generate a synthetic total power load P (t), on/off
appliances are modeled by their power demand pd, the average
usage time ton and the average occurrence frequency of an
appliance fon. This parameters {pd, fon, ton} are initialized as
follows.

• Power demand pd is a uniformly distributed variable in
the range pd ∈ {100, 3000} in Watts (W),

• Average usage time ton is a uniformly distributed variable
in the range ton ∈ {60, 3600} in seconds (s) and

• Average occurrence fon is a uniformly distributed variable
in the range fon ∈ {1, 10} in average number of
occurrence per day.

The information of {pd, fon, ton} is fed into the transition
matrix A and the observation matrix B. Thus, for an on/off
appliance the on probability is pon = fon/T , where T = 86400
and the off probability poff = 1/ton. The observation matrix
is built up by B = {0, pd}, where B = 0 belongs to the
appliance off state and B = pd belongs to the on state. Multi-
state appliances are defined in a similar way. The transition
matrix A is defined in a way that the on probability is chosen
equivalently for on/off appliances. The transition states from
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one state to the other state are defined by ton and is the
same for each transition from one state to another state. The
probability of staying in the same state is calculated by 1 minus
the sum of all other transition probabilities. The observation
power demand matrix Bm is defined by the power demand
values for each appliance state. Unless stated otherwise, we
used a sampling frequency of 1 second, one simulation run
corresponds to one day of 86400 seconds and in general 100
simulation runs for each test scenario and configuration were
computed.

B. Real-World Dataset: REDD

We decided to use the REDD dataset as real-world dataset
because the data was recorded for several appliances and houses
over several days [13] and it is well-known in the research
community. For our evaluations we used house 1, where each
appliance is defined by the recorded apparent power. We choose
6 different appliances which are common in households and
are affecting the energy consumption of an household in a
significant way [3]. The REDD dataset offers submetered power
profiles, i.e. the devices are known and the load is already
disaggregated. We calculated an overall power profile based
on the submetered data which was fed into PALDi2. PALDi
is a model based state estimation approach, thus for each used
appliance the transition matrix A and the observations matrix
B has to be determined. For this we used the MATLAB pre-
programmed HMM functions to construct the matrices A and
B. According to the appliance types, we used on/off appliances
and multi-state appliances, where we give the algorithm the
possibility to adjust its used power demand for each iteration.
The used sampling frequency is one second.

C. Evaluation Metrics

To evaluate the performance and the precision of the
proposed approach, we use the normalized root mean square
error (RMSE) and the accuracy of the classification. The
normalized RMSE is formulated as

RMSE =

√
E((Θ̂−Θ))2

max(Θ)−min(Θ)
, (9)

where Θ represents the true total power load, Θ̂ the estimated
total power load produced by PALDi and max(Θ) and min(Θ)
the maximum and minimum power value of the total power
load. To be able to formulate the accuracy of the classification
process, the following classification terms have to be defined
such as TP (number of times an appliance is correctly detected
as ON), FP (number of times an appliance is wrongly detected
as ON), FN (number of times an appliance is wrongly detected
as OFF) and TN (number of times an appliance is correctly
detected as OFF). The classification terms TP, FP, FN and TN
are straightforward for On/Off appliances. Considering multi-
state appliances we remark that we consider only the operating
state if an appliance is on or off and not, if a device is in a
certain operating state. With the mentioned classification terms,

2The submetered power profiles have a varying sampling frequency and
are partially out of order which makes it necessary to adjust the sampling
frequency on an equal level using interpolation
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Fig. 3: Household Power Load of one day generated by the
synthetic HMM model.

the overall classification result is calculated by combining TP,
FP, FN and TN to the accuracy metric

ACC =
TP + TN

TP + TN + FP + FN
∈ [0, 1], (10)

where ACC represents how accurate appliance states can be
detected by the proposed approach. Both presented metrics are
computed by the mean of the achieved metric value for each
simulation run whereas the metric value for each simulation
run is computed by mean of the reached metric values on
appliance level.

V. EVALUATION SCENARIOS

A. Synthetic Dataset

In the following, different test scenarios are described. The
used appliance model is defined by the synthetic HMM model
of Section IV-A. An example for the power load generation
by the FHMM household model is shown in Figure 3.

1) Scenario for a varying number of aggregated appliances:
The number of active appliances in a house depends on the time
of day, weekday and season as wells as on personal variances,
since every person has different appliances and usage habits.
Therefore, we simulated 100 different appliance compositions,
whose size varies in the range N ∈ [9, 12, 15, 18] in the case
of on/off appliances. We compute the accuracy and the RMSE
of PALDi with a particle number of Np = 100.

2) Scenario for the influence on a varying number of
used particles: The efficiency of the particle filter is mainly
dependent on the number of used particles. In this test
scenario, the dependence on the particle number in the range
of Np ∈ {100, 200, 500, 1000} is evaluated. To make an
assumption on how the particle parameter Np influences the
performance of PALDi, we compute the accuracy and RMSE.
The experiment is made for on/off appliances on synthetic
appliance models. The number of used appliances is N = 12.

3) Scenario for the influence on an imperfect appliance
model: In this paper, the used appliance model is depen-
dent on the transition matrix A and the observation matrix
B. Matrix A consists of the parameters pon, poff and the
matrix B is dependent on the average power demand pd.
In case of the power demand pd, the used value can vary
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from appliance to appliance and from time to time due to
the imperfect manufacturing process of a device and the
environmental circumstances. Accordingly, we modify the
used power demand of each appliance proportional to its
size in the range σp ∈ {5%, 10%, 20%}, we give the particle
filter the knowledge that the power demand is changing and
approximate the current disturbed power value by the particle
filter estimation. The evaluation is done for on/off appliances
(N = 12). Furthermore, the appliance model is dependent on
the frequency of occurrence, which is represented by fon and
depends on the average running time represented by ton . The
values fon and ton define the on and off probabilities of each
device. Thus, we evaluate the estimation behavior on varying
fon and ton by doubling the usual and saved parameter values.
We change the values for fon and ton, where PALDi does
not have any information about the imperfect appliance model.
Our approach modifies and compensates naturally imperfect
model probabilities by scanning the search space with different
particles. The variation for fon and ton simulates the human
behavior to choose independently at any time either to use or
not to use an appliance. The simulations are done for N = 12,
Np = 100 for on/off appliances generated by synthetic data.

4) Scenario for the extension from on/off to multi-state
appliances. The general load disaggregation issue: The general
and most simple appliance model is the on/off appliance model.
However, many appliances are working in a multi-state manner
having several states with a specific amount of power for each
state. By considering multi-state devices in load disaggregation,
the problem of identifying appliances gets more complicated.
We introduce a set of realistic devices in Table I, where we
represent the appliances with their power demand for each
operating state, the average run time ton, which specifies the
mean number of seconds to run in a state and the average
frequency of occurrence fon, which indicates how often a
device is turned on per day3. For the evaluation of PALDi, the
accuracy in total and on appliance level and the RMSE are
listed in Table I. In total, 10 whole days were simulated where
12 random appliances out of all devices were chosen for each
day. The number of used particles is Np ∈ {100, 1000}.

5) Scenario for analyzing the run-time performance of
PALDi: In this scenario, we assess the execution time of
our algorithm on 1000 data samples. We ran PALDi and
measured the mean run-time of one sample computation.
We vary the number of particles in the range Np ∈
{100, 200, 500, 1000} and the number of appliances in the
range N ∈ {6, 8, 10, 12, 14, 16}. The used appliance models
are based on the devices in Table I. We used a MacBook Pro
2.8 GHz Dual Core i7, 8 GB and Mac OS operating system
to execute the algorithm for this scenario.

B. REDD Dataset
In this test scenario, PALDi is applied on real data from

the well-known REDD dataset. In the evaluation, we compute
the accuracy and the RMSE, where the RMSE indicates on
the one hand the estimation precision and on the other hand
how good multi-state appliance can be detected. We used three
variation of PALDi:

3The times fon and ton are assumed to the same for each appliance state.
Thus, the running time of state 1 and state 2 of a desired device are the same.

N 9 12 15 18
Accuracy 0.9538 0.9365 0.9190 0.8964
RMSE 0.1137 0.1677 0.1966 0.2413

TABLE II: Accuracy and normalized RMSE error for varying
number of appliances N ∈ {9, 12, 15, 18}.

Np 100 200 500 1000
Accuracy 0.9365 0.9445 0.9586 0.9599
RMSE 0.1677 0.1292 0.0889 0.0831

TABLE III: Accuracy and normalized RMSE error for varying
number of particles Np ∈ {100, 200, 500, 1000}.

• without noise adaptation behavior where the PF uses the
exact power demand of the observation matrix of the
HMM

• noise adaptation behavior where the PF varies the power
demand of the observation matrix in predefined ranges to
compensate inaccurate appliance models

• resetting behavior where the PF is setting its posterior
estimations to a random composition of samples each
expired minute.

The number of particles is chosen as Np = 100.

VI. EXPERIMENTS

A. Synthetic Dataset

1) Scenario for a varying number of aggregated appli-
ances: In this scenario we are evaluating the accuracy and
the RMSE of PALDi for a varying number of appliances
N ∈ {9, 12, 15, 18}. We calculate the mean values over
100 simulation runs and over all used appliances. Table II
shows that the accuracy is decreasing by increased number of
appliances. Also the RMSE increases by an increased number
of appliances. As reason we assume that our household power
load generated by synthesis shows a high degree of overlapping
appliances. This could be seen in Figure 3 where a produced
power profile generated by synthetic data is shown. Power
peaks up to 8kW are shown, where several appliances are
running at the same time.

2) Scenario for the influence on a varying number of used
particles: We simulated 100 different appliance compositions
to be able to make an assumption how the number of used
particles influences the accuracy and RMSE of PALDi. Thus,
in Table III the accuracy and RMSE versus the number of
used appliances is listed. It is apparent that with increasing
particle number also the accuracy is increasing and theRMSE is
decreasing. We also claim that for the problem of 12 different
appliances a particle number of 500 to 1000 is sufficient.
By increasing the number of devices we recommend also
to increase the number of particles as the accuracy with an
increased number of appliances is decreasing (see Table II) and
a increased number of particles improves the load disaggregator
result in both, reached accuracy and RMSE value (see Table
III).

3) Scenario for the influence on an imperfect appliance
model: The first part of this scenario deals with imperfect mod-
eling of the power demand pd for a used appliance model. The
power demand pd is changed by σp ∈ {0%, 5%, 10%, 20%} in
positive and negative direction. PALDi has the possibility to
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Accuracy
Name Pstate1 Pstate2 Pstate3 Pstate4 avg. run time avg. occurrence Np = 100 Np = 1000

Watter Kettle 1980 0 - - 120 10 0.9987 0.9996
Stove 870 0 - - 1200 5 0.9452 0.9955

Freezer 170 0 - - 120 100 0.9408 0.9756
Iron 1430 0 - - 1800 2 0.9870 0.9946

Refrigerator 78 0 - - 300 150 0.9349 0.9569
Toaster 700 0 - - 250 2 0.9931 0.9976

Vacuum Cleaner 1100 0 - - 800 2 0.9581 0.9986
Air Condition 1000 0 - - 200 200 0.9817 0.9898

Hair Dryer 1530 0 - - 600 2 0.9944 0.9948
Boiler 1300 0 - - 1200 4 0.9849 0.9830

Waffle Iron 950 0 - - 600 2 0.9492 0.9851
Curling Iron 90 0 - - 100 3 0.9871 0.9929

Mixer 80 0 - - 180 2 0.9892 0.9872
Coffee Machine 10 1150 0 - 120 5 0.9660 0.9155
Clothes Dryer 250 1800 0 - 3600 1 0.9161 0.9131

Clothes Washer 170 650 0 - 3600 1 0.9278 0.9192
Microwave 5 1650 0 - 300 4 0.9268 0.9608
Dishwasher 5 200 1200 0 3600 2 0.9323 0.9817
Total ACC - - - - - - 0.9619 0.9745

RMSE - - - - - - 0.1099 0.0395

TABLE I: A selection of typical on/off and multi-state appliances described by the power demand for each state, average usage
time and average occurrence per used observation window. It further shows the accuracy on appliance level, and in total and
the reached RMSE of PALDi for a different number of particles Np ∈ {100, 1000}.

σp 0 5 10 20
Accuracy 0.9365 0.9027 0.8693 0.8430
RMSE 0.1677 0.2470 0.3025 0.3340

TABLE IV: Accuracy and normalized RMSE error for
noise interfered power magnitudes in the range σp in
{0%, 5%, 10%, 20%}.

σdon no influence f̂on = 2 · fon t̂on = 2 · ton
Accuracy 0.9365 0.8939 0.9229
RMSE 0.1677 0.1 0.0693

TABLE V: Accuracy and normalized RMSE error for noise
interfered f̂on and t̂on

vary the estimated power value from the appliance model set
power demand in a priori determined ranges to improve the
estimation result. In Table IV, the accuracy and the RMSE for
the simulations are shown. The performance is decreasing by
a varying appliance model. Moreover, an additional problem
for the algorithm is that similar consuming appliances can
be confusing to the approach if the power demand difference
between two devices is in the range of the imperfect appliance
power demands. Furthermore, to consider also the frequency
of appliance occurrence fon, we change also this parameter
by f̂on = 2 · fon to simulate a commonly appliance usage
frequency per day. The accuracy and the RMSE is presented in
Table V. Our proposed approach has a decreased accuracy if
fon is not the same as the true predefined value. However, the
proposed algorithm tries to compensate this by probabilistic
scanning the appliance state space from sample to sample each
time. The minor loss of accuracy is acceptable considering that
PALDi has no information about the model difference. Beside
the probability to switch a device on, an important parameter
of the appliance model is when to switch an appliance off.
Therefore, the parameter ton is varied which defines the average
running time of an appliance. We change the parameter by
t̂on = 2·ton and evaluate the performance of PALDi. Accuracy

and RMSE are shown in Table V.
4) Scenario for the extension from on/off to multi-state

appliances. The general load disaggregation issue: In the
previous scenarios, the proposed approach was evaluated
according to synthetic data of on/off appliances. In this scenario
the accuracy and RMSE of on/off and multi-state appliance
according to Table I are evaluated. In this table, the simulation
results for the accuracy and the RMSE are shown. Accordingly,
the algorithm works with simple on/off appliances and with
multi-state appliances.

5) Scenario for analyzing the run-time performance of
PALDi: An important as well as critical point of using PF for
the estimation process is the runtime. Therefore, we made this
evaluation where the runtime for varying number of appliances
and varying number of particles is reviewed. Table VI shows
a linear behavior of run time in relation to the number of
appliances and the number of used particles. This evaluation
are based on MATLAB simulations and reaches running times
in millisecond range on desktop hardware. To improve the
computation, it is necessary to implement PALDi in a higher
performance programming language such as C. By using the
MATLAB C-converter, we could improve the runtime by a
factor of 5 on the same PC. Therefore, the algorithm can also
work in real world applications on a low-cost hardware such
as a Raspberry Pi.

B. REDD Dataset
To test the proposed approach on real data, we used the

REDD dataset, where a composition of appliances was chosen
to be detected. We choose general household appliances, which
are listed in Table VII. In this table also the accuracy results
on appliance level and in total as well as the RMSE are
presented. We tested the standard PF case with noise adaptation,
with no noise adaptation and with resetting behavior. The
best accuracy and RMSE are achieved with noise adaptation4

4Power estimated by PF can vary in the range of 10W
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t/ms Np = 100 Np = 200 Np = 500 Np = 1000
N = 6 0.69 1.55 5.95 22
N = 8 0.88 1.64 6.22 22
N = 10 0.97 1.79 7.02 22
N = 12 1.14 2.02 7.37 22.5
N = 14 1.29 2.16 7.8 24.2
N = 16 1.44 2.44 8.3 25

TABLE VI: Computation time in milliseconds for the calcu-
lation of one time sample over the number of used particles
Np ∈ {100, 200, 500, 1000} and the number of used appli-
ances N ∈ {6, 8, 10, 12, 14, 16}. This evaluation was done
with MATLAB simulation on the appliance of Table I.

House1
noise-adapt. no noise-adapt. resetting multi-state

Oven 0.9697 0.9538 0.9909 -
Fridge 0.8049 0.8503 0.7886

√

Dishwasher 0.5943 0.5690 0.7712
√

Kitchen Outlet 0.7062 0.6428 0.9832 -
Microwave 0.3489 0.3593 0.8833

√

Washing Dryer 0.9873 0.9868 0.9953 -
Total 0.7352 0.7270 0.9021 -
RMSE 0.167 0.207 0.0296 -

TABLE VII: Accuracy in total and on appliance level and
normalized RMSE error for PALDi on the REDD data set for
House 1.

and resetting behavior5. Noise adaptation overcomes appliance
model inaccuracies and the resetting behavior improves the
dynamic behavior of PALDi. The results also show that similar
appliances such as oven and microwave or dishwasher and
kitchen outlet have a decreased accuracy which is due to
the fact that the PF has no possibility to distinguish between
consuming appliances with identical consumption behavior.
The most import feature for the PF is the power demand which
is for similar appliances nearly the same. Moreover, Table VII
shows that a multi-state appliance model such as in the case
of the dishwasher (3 operation states) can be detected with
PALDi. In Figure 4 an example for a power load with the
REDD data set is shown and Figure 5 presents the estimated
power load by our approach PALDi. The minor difference
between the power loads are visible.

VII. DISCUSSIONS

In the previous sections different evaluation scenarios were
presented. We showed that the algorithm is dependent on the
number of used particles. The higher the number of particles the
higher the reached accuracy (Table III) is. With the variation
of the particle number it is also possible to overcome the
loss of accuracy (Table II) if the number of appliances is
increased. Moreover, the algorithm has the characteristics
to compensate imperfect appliance models. Power demand
differences of 5% are common power demand variation of
appliances, where we showed that PALDi can handle this
situation by randomly changing the output of the particle filter
in predefined ranges. The observation value of each HMM
represented by the observed power demand of each appliance
state can fluctuate within limits to compensate irregularities
in the appliance power demand. Considering the modeling of

5The posterior density is reseted every second

the appliance HMM, our evaluations show that an imperfect
modeling of the appliance switching frequency has a decreasing
effect on the accuracy of the load disaggregator whereas an
imperfect modeling of the average usage time of a device has
a minor to no effect on the performance of PALDi (Table V).
Therefore, the learning of the appliance model is simplified.
PALDi can work with general appliance models with known
structure such as on/off appliance or multi-state appliance
(Tabel I and VII) and common transition probabilities on
synthetic and real-world data. Additionally, also the common
power demand of each appliance state should be known. Our
approach not only handles the detection if a device is on or
off, it also detects in which operation state the appliance is
currently. However, PALDi is dependent on the choice of
power demand of the appliance. The power demand is the
main feature used for the estimation process. Accordingly, if
appliances with similar power demands are presented in the
same household, PALDi could not work proper any more, since
it has no feature and no hint to decide to which appliance the
current power demand belongs to. This is a general problem
for NILM algorithms which can be solved by improving the
distinctive features such as improving the used sampling rate
(e.g. from steady-state to transient behavior), to add further
features such as reactive power measurements or to modify the
sample-by-sample approach to a windowing approach. Finally,
a very important point to evaluate the performance of a NILM
approach is the degree of overlapping power draws. The more
devices are running simultaneously and are aggregating their
power profiles, the more complex the disaggregation problem
becomes. We showed this as well as the ability to perform
sufficient estimation results for power draws with high degree
of overlapping power by simulations on synthetic data (Table
II and I).

VIII. RELATED WORK

In general, NILM approaches can be divided into supervised
and unsupervised approaches [17]. The supervised approach
needs a labeled data set to train a classifier and can be
divided into optimization and pattern recognition [18] based
algorithms. In the optimization based approaches, the problem
of aggregated power profiles is modelled into an optimization
problem. A total power consumption and a database of known
power profiles of appliances are given. With this knowledge, a
random composition of database power profiles is selected to
approximate the total power consumption with minimal error
[19, 20, 21, 22]. In case of pattern recognition approaches,
proposed methods can be divided into clustering approaches [4],
neural networks algorithms [23] and support vector machines
based algorithms [23, 24]. The disadvantage of the supervised
classification approach is the required a priori information.
Accordingly, recent research in NILM is more concerned
with unsupervised algorithms, which is using unlabelled data.
Unsupervised algorithms do not need any training data. Recent
algorithms are based on blind source separation [25], on HMM
[26, 27], on FHMM [11], different variants of FHMM [10, 28]
and on source separation via non negative tensor factorization
[29]. Moreover, the work of [30] uses Kalman filtering instead
of PF for NILM. As mentioned in Section I the work of Hart
was the first NILM approach which used active and reactive
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Fig. 4: Total power load of 6 appliances of the REDD data
set for a time slice of several hours
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Fig. 5: Estimated total power load by PALDi of the power load
as in Figure 4 with noise adaptation and resetting behavior.

power records to establish an appliance model based on finite
state machine (FSM) by clustering. He used this information
to infer an appliance to be on or off. The proposed approach
uses a deterministic appliance model which is not appropriate
as a realistic appliance model because of its deterministic
behavior representation. Thus, a probabilistic appliance model
based on HMM is advantageous and occupies recent research
[26, 27, 11, 10, 28]. For exmple the work of [28] reports
an average accuracy of 83% for up to 10 appliances with
a 3 second sampling interval. The work of [10] obtains an
average accuracy of 87% for 7 appliances with a 60 second
sampling interval. The most related work is presented by
Zoha [11]. It shows an average accuracy of 90% for on/off
appliances and 80% for multi-state appliances (5 appliances
were tested) with a 3 second sampling interval. It defines
on/off and multi-state appliances and estimates the appliance
state space. Our proposed approach differs from [11] and the
initial work of Hart [4], as we use only the active or apparent
power as estimation feature6 instead of using several feature
combinations of active power, reactive power, apparent power
or power factor as in [11] and we tested our approach on
synthetic and real-world power draw. Moreover, we tested
PALDI on common household appliances in which the number
of aggregated appliances was 6 for real world data and up to
18 for synthetic consumption data in contrast to the work of
Zoha which used up to 5 appliances.
Unfortunately, there exists currently no accepted and approved
evaluation test case and metric, which makes a numerical
comparison between approaches complicated. Thus, a qualita-
tive evaluation is possible, as the fulfillment of the Zeifman
requirements.

IX. CONCLUSION

We propose an evaluation on the feasibility of particle
filtering on the problem of disaggregated power loads in house-
holds. We tested on/off and multi-state appliances modeled
by HMM superimposing their power draws by the use of a
FHMM. We suggest to use PF as NILM algorithm, because

6The use of one appliance feature is advantageous because of its applicability
to recent smart meters.

PF is applicable to estimate the inference of FHMM and
is suitable for non-linear problems with non-Gaussian noise.
PF is beneficial because of its characteristics to improve the
estimation performance by increasing the number of particles
and to search through the possible search space to compensate
imperfect appliance model assumptions. In Section I the
requirements of a method useful for NILM problems are
reviewed. We compare these requirements with the results
of the proposed approach:

• The used appliance model and household model is
defined by its power and time characteristics. A device is
characterized by its active power demand in 1s resolution.

• The total accuracy of PALDi is higher than 90% for real
data.

• No training during operating of PALDi is necessary. The
algorithm needs a general knowledge of the structure and
power demand of the used devices in the household. The
algorithm is only dependent on the previous state and not
on historic data.

• The algorithm is real-time capable with a running time
smaller than the measurement sampling time.

• The complexity of the proposed approach is based on
the direct proportional relation between the number of
particles and the number of used appliances. The higher
the number of particles the better is the result of PALDI
and the higher the number of appliances with constant
number of particles the lower is the accuracy of PALDI.
Thus, the number of particles has to be chosen appropriate
depending on the number of appliances.

• The proposed algorithm depends on the used appliance
model. Currently, the algorithm was tested with on/off
and multi-state appliances and will be extended and tested
with other appliance types like continuous consuming
appliance types.

In summary, the contribution of this paper is the the fulfilment
of the requirements presented by Zeifman [6] by keeping the
algorithm and the appliance model as simple as possible and by
evaluating the proposed approach with synthetic and real-world
data.
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