
Intelligent UART Module for Real-Time
Applications

Martin Delvai1, Ulrike Eisenmann1, Wilfried Elmenreich1

1Institute of Embedded Computing Systems,
Technical University of Vienna, Vienna, Austria

{delvai, eisenmann }@ecs.tuwien.ac.at
wil@vmars.tuwien.ac.at

Abstract — More and more fieldbus applications require a communication with
real-time properties, while still being economically feasible. The fieldbuses LIN and
TTP/A take this requirement into account by providing a temporally deterministic
communication protocol that uses a common UART (Universal Asynchronous Re-
ceiver/Transmitter) as communication interface. Due to the fact, that UARTs origi-
nally have not been designed for this kind of application, some problems arise that
require increased software and processing effort or reduce the achievable bandwidth.
This paper presents a UART module that has been adopted to be used in real-time
applications: A synchronization mechanism is provided, which reduces the software
complexity and facilitates the periodical synchronization required by the mentioned
real time communication protocols. Further the UART is able to initialize actions on
occurring events. In this way, a big part of the communication process can be handled
autonomously by the UART module. Send jitter has been eliminated completely and
the arithmetic error in baud rate setting has been significantly reduced. Therefore
the UART module is able to work with unprecise clock sources with a high drift rate,
as it is the case with low-cost RC oscillators.

1 Introduction

A UART (Universal Asynchronous Receiver and Transmitter) is a standard communica-
tion component that is provided by most of the available microcontrollers. In order to
supply a low-cost solution, two novel field-bus protocols, TTP/A [1] and LIN [2], specify
a common UART as communication interface to the network. Both protocols are central-
master UART protocols for low-cost single-chip smart sensor and actuator nodes, which
enable a temporal predictable communication [3].

Case studies [4, 5, 6] have shown that an implementation with COTS (commercial-off-
the-shelf) hardware is feasible. However, an in-deep analysis of the behavior of standard
hardware UARTs has shown that they are hardly suitable for real-time communication [7].
Moreover, both LIN and TTP/A specify a synchronization message that enables a slave
node with an imprecise low-cost on-chip oscillator to synchronize with a running net-
work. As a consequence, implementations for LIN [8] and TTP/A [9] exist that prefer

DELVAI, EISENMANN, ELMENREICH

a software-implemented UART to a COTS hardware UART component, leading to in-
creased software complexity for the implementation of the protocol.

The objective of this paper is to present an improved UART design that overcomes the
problems of standard hardware UART implementations. The UART contains local intel-
ligence supporting the implementation of real-time fieldbus protocols like LIN or TTP/A.
The UART can be configured to react automatically on events or on interrupts. If the
indicated event occurs, an action or interrupt is triggered. The combination of events and
so-called assigned actions make it possible to perform the time-critical parts automatically
without interaction from the microprocessor. The UART is able to recognize the synchro-
nization pattern of LIN and TTP/A on the communication line and to calculate and set
the appropriate baud rate. The UART is part of a modular construction system [10] that
enables a developer to build an application specific network node with minimal effort.

The remainder of the paper is structured as follows: Section 2 describes the problems
with standard UART implementations and states the requirements for an improved UART
module. Section 3 presents the architecture and functionality of our proposed UART
module. Section 4 gives an evaluation on our experiences with an FPGA implementation
of the UART module. Section 5 discusses related approaches for our problem. The paper
is concluded with Section 6.

2 Motivation and Problem Statement

As the market segment for low-cost microcontrollers is continually growing, many com-
ponents get integrated into a system-on-a-chip (SoC). A crucial reduction of costs can be
achieved by integrating a complete network node, comprising a microcontroller, a sen-
sor/actuator, a communication unit and an oscillator on a single silicon die. However,
state-of-the-art technologies do not support the integration of quartz oscillators, so SoCs
are typically equipped with RC-oscillators. The disadvantage of RC oscillators is that
their frequency is very sensitive to voltage and temperature changes, therefore a typical
RC oscillator shows a rated frequency of 1 MHz± 50% and a frequency-drift of up to±
10% per second.

Deficiencies arising from the usage of such oscillators are analyzed in [7] and can be
summarized as follows:

Arithmetic error in baud rate setting: The baud rate setting of a standard UART usu-
ally is configured by integer values of the system clock. The baud rate depends on
the frequency of the UART clocking and is set by choosing an UBRS (UART Baud
Rate Setting) value as follows:

BaudRate =
fclk

C1 · (UBRS + C2)
(1)

The integer constantsC1 andC2 depend on the UART implementation. Typically,
C1 represents the number of samples per bit cell andC2 is 1.

Thus, conventional UARTs need clock oscillators calibrated for a special frequency
(for example a quartz with a frequency of 4.9152 MHz instead of 5.000 MHz) to
achieve standard baud rate settings such as 19,200 bit/s.

INTELLIGENT UART MODULE FOR REAL-TIME APPLICATIONS

Clock drift: Another problem evolves when the clock source shows a high frequency
drift since this directly affects the baud rate of the UART. For example if the fre-
quency drifts from 1MHz to 1.1MHz, the following error arises:

baudrate =
f0 = 1MHz

UBRS = 50
= 19200 baudrate =

f0 = 1.1MHz

UBRS = 50
= 20200 (2)

In order to deal with the drift rate problem communication protocols specify means
of synchronization where a receiving component can derive the baud rate from the
data bits on the bus. The LIN and TTP/A protocol provide a regular bit pattern as
depicted in figure 1. Both protocols specify an identical pattern which can be used
for baud rate detection at startup or for periodic clock synchronization.

Synchronization Pattern St
op

St
ar

t

Pa
r

od
d

UART−Frame 11 − bit

0 1 2 3 4 5 6 7

Figure 1: Synchronization Pattern

Send jitter: Another deficiency of standard UARTs used in real-time communication is
the fact that the point of time for transmission cannot be adjusted with sufficient
precision: we call this problem thesend jitterproblem. Due to the internal clock-
ing, a UART transmission will be only initiated at certain instants. In conventional
UART implementations the baud rate generator permanently runs in the background
and periodically generates potential transmission points. Thus, the start of a UART
transmission may be delayed by an unpredictable duration of up to one bit time. As
a result the user cannot recognize from the outside, when the next pulse is produced.

tjitter = [0..
1

BaudRate
) (3)

Regarding the considerations above, it can be seen that standard UARTs are not very
suitable for the requirements of real-time communication under these boundary condi-
tions.

It is possible to use a software UART implementation but at the cost of node perfor-
mance. In order to send or receive a single bit a software-implemented UART typically
needs to execute about15...40 machine instructions. Moreover, since a software UART
implementation performs only one sampling per bit cell, this approach is also more vul-
nerable to short spike interferences on the communication medium.

So the demand for a special UART which overcomes the disadvantages of standard
UARTs evolves. Thus, our motivation has been to realize a UART that fulfills the follow-
ing requirements:

Temporal predictability: A revised UART design should not be susceptible to arith-
metic errors in baud rate setting or to send jitter problems.

DELVAI, EISENMANN, ELMENREICH

Support for automatic synchronization: The synchronization pattern specified by the
LIN and TTP/A protocol should be supported.

Support for reduced software complexity: The UART should support typical tasks in
real-time systems such as providing timestamps or triggering actions on special
points of time in order to minimize the required user program. This reduces com-
plexity and increases performance.

High flexibility: The UART should be easily adaptable to many applications and designs.

Note that the requirement for flexibility and reduced software complexity are very dif-
ficult to fulfill both at the same time. Thus, special care has to be taken on the design of
the programming interface to the UART component.

Another advantage of a customized UART implemented in hardware could be that due
to the reduced software complexity, the required memory for the application will decrease
so that costs can further be reduced by achieving a smaller silicon die size for the overall
system.

3 UART-Module

The UART is realized as generic extension module [10] and communicates with the pro-
cessor core over a very slim interface. The extensions are mapped to the top address space
of the data memory. For the processors the extension modules are only storage positions
which can be accessed with simple load and store instructions. Therefore, from the pro-
cessor’s point of view it makes no difference, whether the extension is a simple sensor,
actuator, a complex floating-point unit or a UART. Figure 2 shows the generic interface
of these extension modules.

Processor

I/O
extension

BaseAddress

Address

DATA

Interrupt

Interface

Figure 2: Interface of extension modules

In order to be suitable for real time applications our UART module combines a pure
UART with a timer unit. Figure 3 shows the block diagram of the UART module.

The eight 16 bit registers, depicted in the left corner of the schematics provide the
interface to the processor core. The UART control unit is the central part of the UART.
It reads the values of the interface register and generates the control signals of all other
components. The enhanced baud rate generator generates the signals for the receiver and
the transmitter. The error control unit checks the communication process and signalizes
when an error occurs. The bus interface contains a hardware filter, which preprocesses the
input signal from the bus and guides it through to the receiver unit to achieve robustness
against spike interferences.

INTELLIGENT UART MODULE FOR REAL-TIME APPLICATIONS

Error Control Unit Receive UnitTransmission Unit

Enhanced

Baud Rate Generator

UART Control Unit

Busdriver

Interrupt

Memory
Interface

Timing Unit

Uart−Config Register

Command Register

Message Register

Timer Register

TS/TM Register

EUBRS Register

Config Register

Status Register

Figure 3: Block diagram of the UART extension module

The UART is controlled over eight 16 bit registers, whereby the first two registers are
thestatusand theconfigregister.

The semantic of the generic parts of the status and control register are universally de-
fined for all extension modules. The other registers form a module-specific interface that
enables configuration and data exchange.

Status

Config

Data 0

Data 2

Data 3

Data 4

Data 5

Data 1

FSS BUSY ERR RDY INT

IDSRESOUTDEFSSLOOW

LOOR

INTA

SncREvF OvF RBR TBR Unused

Unused

TrErr ParErrOvSErr

ERRI EI SncE

ParEna Odd Stop TrCtrl

Unused

Unused

MsgLength OverS High OverS Low

M e s s a g e R e g i s t e r

T i m e r R e g i s t e r

E U B R S R e g i s t e r

TS / TM R e g i s t e r

A s A E v S

Figure 4: Registers of the UART extension module

The module specific part of thestatus register reflects the state of the UART.Data
0 is used to define communication parameters like message length, type of parity bit,
number of stop bits. The UART performs 32 samples per bit cell - withOverSHigh and
OverSLow the upper and lower bounds can be specified, where a bit is interpreted as
’1’, undefined, or ’0’. Commands to the UART are written into theData 1-register. The
assigned action bitsAsAspecify the reaction of an event defined by the event selection bits
EvS. Table 1 shows the combinations of events and assigned actions that are supported by
our UART.

Using the combination of events and assigned actions makes it possible to specify the

DELVAI, EISENMANN, ELMENREICH

EVENTS EVS BIT CODE ASSIGNED ACTIONS ASA BIT CODE

no event 00 start send transmission011
no event 00 enable receive mode 100
no event 00 disable receive mode 101
no event 00 timestamp 001
no event 00 timerreset 010
startbitdetection 01 timestamp 001
startbitdetection 01 timerreset 010
startbitdetection 01 disable receive mode 101
receive completion 10 timestamp 001
receive completion 10 timerreset 010
receive completion 10 disable receive mode 101
timermatch 11 timerreset 010
timermatch 11 start send transmission011
timermatch 11 enable receive mode 100
timermatch 11 disable receive mode 101

Table 1: Possible events and assigned actions

behavior of the UART module. For example if the module should determine the time of
the start of the next transmission, the EvS bits are set to 01 and the AsA bits are set to
001.

The message register contains the data to be received or transmitted. The current value
of the integrated timer is maintained in the timer register, while the TS/TM contains times-
tamps or timer match values. The EUBRS register is used to set the baud rate. The UART
module is able to automatically detect the baud rate and to set the appropriate value for
this register. If the programmer wants to force a particular baud rate, he or she can set the
EUBRS register directly.

4 Evaluation

We implemented a prototype of our UART module in an Altera Apex 20ke FPGA. The
module requires 699 LE1 and runs with a peak clock frequency of 42 MHz. Even in
extreme cases, for example at a clock frequency of 0.5 Mhz and a reference baud rate
of 115,000 baud, the UART is able to synchronize its baud rate with a deviation of 1%
from the reference baud rate. Measurements concerning delay and send jitter confirm the
theoretical approach presented in the previous section: After a new value has been written
into the command register, it takes exactly one clock cycle to start the synchronization, to
enter the fail safe state or to process the indicated event (theno eventevent as well). Also,
if an event occurs, it takes exactly one clock cycle to process the assigned action and all
registers are written with one clock cycle delay.

Our UART provides the following mechanism to handle the problems described in Sec-
tion 2:

Temporal predictability: The arithmetic error problem is solved by enhancing the func-

1LE: Logic Element - is the smallest programmable unit within Altera’s FPGA

INTELLIGENT UART MODULE FOR REAL-TIME APPLICATIONS

tionality of the baud rate generator: In the EUBRS-register the first twelve digits are
interpreted as integer part of the timer constant and the latter four digits are the frac-
tional part of the timer constant. Four digits for the fractional part are completely
sufficient [7]. The UART calculates the duration of a bit for transmission by using a
fixed comma value EUBRS according to the following formula:

tbit =
EUBRS

16
· 1

fclk

· 1

2
(4)

In contrast to standard UARTs, our module starts the enhanced baud rate generator
immediately after receiving the transmission command. In this way the send jitter is
eliminated completely.

Support for automatic synchronization: Setting theSncE flag in the command regis-
ter causes the module to listen for the synchronization pattern. The synchronization
pattern is always preceded by a duration of bus silence. When the synchronization
mode is set, the UART is disabled until the module captures a correct synchroniza-
tion pattern. When the first falling edge of the pattern has been detected, the timer
resets its value, counts the time for one bit and compares it with the following, until
the end of the synchronization pattern is recognized. A difference of 4 % bit length
is allowed. The value of the timer register is then copied directly into the EUBRS
register.

EUBRS =
TimerConstant

16
(5)

In this way the considerable software effort to synchronize a node is reduced to
setting a flag in the UART module.

Support for reduced software complexity: The fusion of a timer and a UART leads to
a powerful communication module for real time application. As described above the
UART is able to initialize autonomous actions at given points in time. On the other
hand the UART can be used to measure points in time of incoming messages.

High flexibility: Although the design of the UART is optimized for real time applica-
tions, the module can be used as a simple timer or like a conventional UART mod-
ule.

5 Related Work

Our UART is designed to be used as extension module in a modular construction sys-
tem [10]. This system comprises several processor cores, which can be equipped with
different extension modules. Altera offers a similar solution to speed up the development
of customized micro controllers, called NiosR© Embedded Processor System Development
Kit. This development system comprises a UART as well. Similar to our UART, the Al-
tera’s UART is mapped into the data memory of the processor core and is controlled over
five 16-bit registers.

In contrast to our UART, the Alteras module does not provide a mechanism to syn-
chronize its baud rate to a reference baud rate – this limits the applicability of this UART

DELVAI, EISENMANN, ELMENREICH

for fieldbus networks when imprecise oscillators are used. The baud rate of the UART
is defined byBaudRate = fclk

Divisor+1
, whereDivisor can be specified in the respective

interface register. Thus, when arbitrary oscillator frequencies are used, a significant arith-
metic error in baud rate setting occurs. Furthermore, Altera’s UART does not include its
own clocking source but needs an additional timer unit instead. Due to this separation of
UART and timer an efficient interaction by event and assigned action schemes cannot be
achieved. The documentation found on Altera’s homepage does not give any information
about the send jitter. Altera’s UART module requires 293 LE, the timer requires 246 LE,
this results in a total amount of 539 LE for both modules which is almost the same size as
our customized UART.

As an alternative to a UART implementation, it would be possible to use a microcon-
troller that features a time programming unit (TPU), where the TPU could be used to
act as a customized UART. TPUs are available on most Motorola embedded microcon-
trollers [11]. A TPU offers a fine resolution for waveform generation and measurement,
while it is programmable in a machine language that allows great flexibility. However,
since TPU programming can become very complex, the TPU approach does not decrease
software complexity, it is a propriety system from Motorola, and its implementation re-
quires more die size than our customable UART approach.

6 Conclusion

We have presented a UART module that supports real-time networks with low-cost nodes
with imprecise RC oscillators. The UART supports a synchronization mode that allows it
to adjust its baud rate automatically. Furthermore it is able to recognize events (such as
timer match, begin or end of a transmission, etc.) and to perform assigned actions (such
as timestamping or initiating a transmission, etc.) when a particular event occurs. In this
way, a big part of the communication process can be handled autonomously by the UART
module.

Timing problems (such as arithmetic error in baud rate setting, send jitter) that exist with
standard UART implementations have been fixed. Send jitter were eliminated completely
and arithmetic error in baud rate setting was significantly reduced. In that way, the UART
module is able to work with unprecise clock sources with a high drift rate, as it is the case
with low-cost RC oscillators.

The presented UART is well apt to support implementations of LIN or TTP/A smart
transducer networks. Currently, we are porting the TTP/A protocol to a microcontroller
equipped with our UART module.

Acknowledgments

This work was supported by the Hochschuljubiläumsstiftung der Stadt Wien via project
MOSAIC (H-1147/2002).

References

[1] H. Kopetz et al. Specification of the TTP/A protocol. Technical report, Technische Uni-
versiẗat Wien, Institut f̈ur Technische Informatik, Vienna, Austria, March 2000. Available at
http://www.ttpforum.org.

INTELLIGENT UART MODULE FOR REAL-TIME APPLICATIONS

[2] Audi AG, BMW AG, DaimlerChrysler AG, Motorola Inc. Volcano Communication Technologies
AB, Volkswagen AG, and Volvo Car Corporation. LIN specification and LIN press announcement.
SAE World Congress Detroit, http://www.lin-subbus.org, 1999.

[3] H. Kopetz, W. Elmenreich, and C. Mack. A comparison of LIN and TTP/A. InProceedings of the 3rd
IEEE International Workshop on Factory Communication Systems, pages 99–107, Porto, Portugal,
September 2000.

[4] P. Peti and L. Schneider. Implementation of the TTP/A slave protocol on the Atmel ATmega103
MCU. Technical Report 28/2000, Technische Universität Wien, Institut f̈ur Technische Informatik,
Vienna, Austria, August 2000.

[5] Atmel Corporation.LIN Protocol Implementation on the T89C51CC01/02, March 2003. Application
note available at http://www.atmel.com.

[6] R. Obermaisser and A. Kanitsar. Application of TTP/A for the Otto Bock Axon bus. Technical
Report 27/2000, Technische Universität Wien, Institut f̈ur Technische Informatik, Vienna, Austria,
July 2000.

[7] W. Elmenreich and M. Delvai. Time-triggered communication with UARTs. InProceedings of
the 4th IEEE International Workshop on Factory Communication Systems (WFCS’02), Väster̊as,
Sweden, August 2002.

[8] Atmel Corporation. AVR 308: Software LIN Slave, May 2002. Application note available at
http://www.atmel.com.

[9] C. Trödhandl. Architectural requirements for TTP/A nodes. Master’s thesis, Technische Universität
Wien, Institut f̈ur Technische Informatik, Vienna, Austria, 2002.

[10] M. Delvai, U. Eisenmann, and W. Huber. Modular construction system for embedded real-time
applications. InTagungsband of Austrochip 2002, Vienna, Austria, 2002.

[11] R. Soja. Inside Motorola’s TPU.Dr. Dobb’s Journal, December 1996.

