
A Framework for Hardware-in-the-Loop Testing
of an Integrated Architecture

Martin Schlager1, Roman Obermaisser2, and Wilfried Elmenreich2

1 TTTech Computertechnik AG
Schoenbrunner Strasse 7, 1040 Vienna, Austria

martin.schlager@tttech.com
2 Vienna University of Technology

Treitlstrasse 3, 1040 Vienna, Austria
{romano,wil}@vmars.tuwien.ac.at

Abstract. In this paper we present a distributed Hardware-in-the-Loop
(HiL) simulation approach that supports the verification and validation
activities in an integrated architecture as recently developed in DE-
COS (Dependable Embedded COmponents and Systems), an integrated
project within the Sixth Framework Programme of the European Com-
mission. Focusing on the interconnection between the simulated envi-
ronment and the Integrated System Under Test (ISUT), our approach
involves the concept of a Smart Virtual Transducer (SVT) that replaces
the physical transducers of the ISUT without a probe effect on the ISUT.
Our approach enables a complexity reduction for setting up an HiL sim-
ulation and supports a well-designed scalable interface to an integrated
architecture. Furthermore, we support non-intrusive, deterministic in-
teraction between the environment simulation system and the ISUT in
order to guarantee reproducible test-runs. We show an exemplary appli-
cation of the proposed concept by tailoring the generic components of the
proposed simulation approach to an automotive park assistant system.

1 Introduction

The increasing number of electronic functions in future automobiles requires a
change from the traditional ”one function – one ECU (Electronic Control Unit)”
concept to integrated architectures that support bundling several functions in
one ECU. Such an integrated system architecture must provide means to handle
the complexity of distributed applications while supporting efficient integration
of functions into the shared hardware.

An example for an integrated system architecture is the DECOS Integrated
Architecture [1], which builds upon the validated architectural services of a time-
triggered core architecture. A distributed time-triggered computer system pro-
vides a physical network as a shared resource for the communication activities
of more than one application subsystem. Other integrated architectures are AU-
TOSAR [2] and IMA [3].

Integrated architectures pose also a challenge to the HiL test procedure, a
standard method for testing of an embedded controller before its deployment [4].

gymi
Text Box
© Springer, 2007. This is the author's version of the work. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purpose or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from Springer. The definite version is published in Springer Lecture Notes, 4761:159–170, 2007

II

HiL simulation is a technique where parts of a real system are replaced by
a simulation, i. e., a mathematical model of these real system parts [5]. HiL
simulation offers increased realism of the simulation because access to hardware
features is provided that would not be available in a pure software simulation. In
an integrated system, applying the HiL test procedure requires finding adequate
interfaces between the simulator and the Integrated System Under Test (ISUT).

In this paper we present a distributed HiL simulation approach for the DE-
COS Integrated Architecture. The interaction between the simulated environ-
ment and the ISUT involves the concept of a smart virtual transducer (SVT)
that replaces the physical transducers of the ISUT without a probe effect on the
ISUT. Thus, an ISUT as part of an integrated architecture can be connected to
the HiL simulator in a non-intrusive way. Each SVT communicates with other
components of a distributed environment simulator via a standardized time-
triggered digital interface. Furthermore, an SVT emulates a transducer-specific
interface. The proposed concept enables a complexity reduction for setting up a
HiL simulation and supports a well-designed scalable interface to an integrated
architecture.

The rest of the paper is structured as follows: Section 2 reviews related work
in the area of HiL simulation. Section 3 describes structure and features of the
integrated system architecture that is used in our approach. Section 4 elaborates
on the architecture of the environmental simulation system. We present a case
study based on an exemplary prototype application in Section 5 and discuss the
implications on reproducibility of simulation results in Section ??. The paper is
concluded in Section 6.

2 Related Work

In the literature, a number of approaches can be found that aim at testing dis-
tributed real-time applications with a pure software simulation. For instance,
a testing method of distributed algorithms that includes a simulation model of
the communication subsystem is presented in [6]. Furthermore, in [7], an inves-
tigation on pre-validation of system properties of a safety-critical distributed
real-time system by a simulation environment can be found. Another approach
is given in [8], where a generic MATLAB/Simulink toolbox has been introduced
for simulation of distributed real-time control systems. This toolbox includes a
real-time kernel module for task activation and a network module that can be
tailored to a particular network model.

In contrast to a pure software simulation, HiL simulation involves physical
hardware components, i. e., nodes, of a real-time system. Hence, HiL simula-
tion requires the construction of an environment simulator in order to emulate
the environment of these nodes [9]. In case only a subset of nodes of a distrib-
uted real-time system exist, non-existing nodes must be simulated by a cluster
simulator as discussed in [10–12].

HiL simulators are constructed for a wide range of different applications. For
instance in [13] real-time HiL simulation of vehicle and mobile robots is proposed

III

to avoide extensive formal analysis of these systems. In the traffic control domain,
system integrators are confronted with frequent changes of signal timing plans
implemented in traffic controllers. These signal timing plans are provided by
sub-suppliers as closed intellectual property (IP) software modules. Hence, HiL
simulation is proposed in order to fine-tune these signal timing plans while at
the same time protecting the intellectual property (IP) of the individual sub-
suppliers [14].

Commercially available HiL simulation systems range from simple simulators
that target at testing a single ECU to complex simulators that are capable of
testing large distributed real-time systems. DSP Builder [15] by Altera3 and
Tanto2 Test by Hitex4 are examples for simple HiL simulators, where a single
hardware target (i. e., an FPGA, or a single ECU) is directly connected to a
development PC that executes an environment simulation.

Several vendors offer solutions for more complex HiL simulators. Regarding
such complex HiL simulators, we can basically distinguish between monolithic
and distributed HiL simulators.

A modular, component-based, monolithic HiL simulator, uses a single device
that is configured to offer all required interfaces for a particular SUT. Mono-
litic HiL simulators are offered for instance by dSpace5 (Simulator Mid-Size,
Simulator Full-Size), The Mathworks6 (xPC Target [16]), National Instruments7

(LabVIEW), and Pi Technology8 (Pi Autosim). These simulator products can
be equipped with a range of modular I/O boards and processor boards in or-
der to be tailored to a certain HiL simulation system. I/O hardware solutions
include analog and digital I/O, CAN, PWM, dynamic signals, motion control,
image acquisition as well as FPGA modules.

In contrast to a monolitic HiL simulator, a distributed HiL simulator con-
sists of several interacting nodes that are capable of executing a distributed
simulation model. Each of these nodes can be equipped with application-specific
I/O hardware. Distributed HiL simulators are provided by Applied Dynamics
International (ADI)9 (ADI rtX simulator), Opal-RT10 (RT-LAB), and RTDS
Technologies11 (RTDS Simulator). These distributed simulators interact either
by the exchange of data that is visible at the interfaces of the SUT (emulated elec-
tronic interfaces), or by the exchange of data that is part of the simulation model
and that is not visible at the SUT’s interfaces (virtual interfaces) [17]. Commu-
nication via the virtual interfaces, i. e., interaction between different nodes of
a distributed simulator is either realized by the implementation of an event-
triggered protocol (e. g., Ethernet, SCRAMNet, FireWire, or INFINIBAND) or

3 http://www.altera.com
4 http://www.hitex.de
5 http://www.dspace.com
6 http://www.mathworks.com
7 http://www.ni.com
8 http://www.pitechnology.com
9 http://www.adi.com

10 http://www.opal-rt.com
11 http://www.rtds.com

IV

Node 2

Job 1.2 Job 3.2 Job 4.1

Node 1

Job 2.1 Job 1.1 Job 3.1

Node 3

Job 2.2 Job 1.3 Job 4.2 Job 2.3 Job 3.3 Job 4.3

TT Communication Controller TT Communication Controller

TT Communication Controller

DECOS MW

TT Communication Controller Jobs of DAS 1

Jobs of DAS 2

Jobs of DAS 3

Jobs of DAS 4

High-Level Architectural Services
(e.g., Diagnosis, Encapsulation,
Virtual Networks, Gateways)

Core Services of Time-Triggered
Physical Network:

Time-Triggered Transport
of Messages
Fault-Tolerant Clock
Synchronization
Strong Fault Isolation

Node 4

Local I/O

Fieldbus FieldbusLocal I/O Local I/O

Local I/O

Local I/OLocal I/O

POS DECOS MWPOS

DECOS MWPOSDECOS MW POS

POS = Partitioning Operating System

DECOS MW = DECOS Middleware

Fig. 1. Distributed System in the DECOS System Architecture

by a common communication backplane as for the RTDS Simulator, that links
all processing nodes in parallel.

Although all HiL simulators are designed for real-time execution of a sim-
ulation model, the existing solutions lack a scalable approach for deterministic
interaction between HiL simulator components. Moreover, none of the existing
solutions target at HiL simulation in an integrated architecture.

3 Integrated System

Many large applications (e. g., in the automotive or aerospace domain) consist of
a number of nearly independent application systems. We call such an application
subsystem a Distributed Application Subsystem (DAS). A DAS provides a major
part of the overall application and is composed of smaller functional elements
called jobs. In the automotive domain, the powertrain subsystem, the comfort
subsystem, and the multimedia are examples for DASs. Examples of DASs in a
present-day avionic application are the cabin pressurization system, the fly-by-
wire system, and the in-flight entertainment system.

The proposed framework for HiL simulation is designed for integrated ar-
chitectures, i. e., a single distributed computer system serves as the execution
platform for multiple DASs. Each node computer of the distributed computer
system contains jobs of one or more DASs (cf. Figure 1). Likewise, the commu-
nication network that interconnects the node computers serves the transport of
messages between jobs of more than one DAS.

V

In the following, we will discuss the structural elements of the DECOS ar-
chitecture (i. e., network, nodes, environment), because this system architecture
will be used for the construction of the framework for HiL simulation.

3.1 Communication Network

The communication network of the integrated architecture executes a time-
triggered protocol (e. g., TTP [18], FlexRay [19]). The rationale behind choosing
a time-triggered communication protocol is the suitability for ultra-dependable
systems [20]. Time-triggered communication protocols are characterized by a
guaranteed message transport with low jitter, error containment between node
computers, and a fault-tolerant distributed global clock service.

3.2 Node Computers

A node computer provides an execution environment for multiple collocated jobs
of one or more DASs as shown in Figure 1. Each job implements a part of the ap-
plication functionality and is within the responsibility of a single organizational
entity (e. g., a specific supplier).

The allocation of computational resources (e. g., memory, CPU time) to jobs
occurs using a partitioning operating system with support for fault isolation
and modular certification [21, 22]. The partitioning operating system implements
mechanisms for spatial and temporal partitioning in order to encapsulate the
individual jobs. The scheduling of jobs needs to ensure that a timing failure of
a job, such as a worst-case execution time violation, does not affect the CPU
time available to other jobs. In analogy, the spatial partitioning mechanisms
of the partitioning operating system enforce memory protection between jobs
(e. g., with a memory management unit).

The interaction with other jobs occurs through the services provided by the
DECOS middleware. The DECOS middleware offers high-level architectural ser-
vices, which serve as a baseline for the development of applications. These ser-
vices constitute the interface for the jobs to the underlying platform. Among the
high-level services are gateway services, virtual network services, encapsulation
services, and error detection services. On top of the time-triggered physical net-
work, different kinds of virtual networks are established and each type of virtual
network can exhibit multiple instantiations. Gateway services selectively redirect
messages between virtual networks and resolve differences with respect to oper-
ational properties and naming. The encapsulation services control the visibility
of exchanged messages and ensure spatial and temporal partitioning for virtual
networks in order to obtain error containment.

Below the DECOS middleware, each node computer in Figure 1 contains
the communication controller. The communication controller executes a time-
triggered communication protocol as required for accessing the network. It pro-
vides so-called core architectural services (i. e., time-triggered transport of mes-
sages, fault-tolerant clock synchronization, strong fault isolation), which are used

VI

as the basis for the implementation of the high-level architectural services in the
DECOS middleware.

The rationale for distinguishing between the core architectural services and
the high-level architectural services is the ability to exploit existing time-triggered
communication protocols for the construction of an integrated architecture. For
example, it has been demonstrated by formal analysis [23] and experiments [24]
that the Time-Triggered Protocol (TTP) is appropriate for the implementation
of applications in the highest criticality class in the aerospace domain according
to RTCA DO-178 B Level A.

3.3 Input/Output

In order to perform integration tests that involve the interaction between a
given distributed computer system and its environment, the framework needs to
simulate the physical surroundings of the computer system, i. e., the controlled
object(s) and the operator. In a real-world system, the interaction between the
computer system and the environment occurs via transducers, i. e., sensors and
actuators. These transducers can either be connected directly or interfaced via
a fieldbus. The latter approach simplifies the installation from a logical and a
physical point of view and is extendable but might introduce higher cost and
increased latency of sensory information and actuator control values.

4 Environmental Simulation

4.1 Simulator Architecture

HiL simulation of an integrated system involves a simulation of the environ-
ment of this integrated system. Thereby, a HiL simulation system consists of the
following two major building blocks:

Integrated System Under Test (ISUT): The ISUT is either an integrated
system as outlined in the previous chapter (refer to figure 1) or a part thereof.
The ISUT interacts with its environment across the so-called Controlled
Object Interface (COI) [26].

Environment Simulator: The aim of an environment simulator is to substi-
tute the environment or parts of the environment of the ISUT. An envi-
ronment simulator is constrained by the properties of the ISUT, i. e., the
interfaces of an environment simulator that are relevant for the interaction
with the ISUT must resemble the interfaces of the ISUT in the temporal
and the functional domains. The environment simulator executes a simula-
tion model of the process under control of the ISUT and a model of the
behavior of the transducers. The input and output from these models is fed
to the ISUT via the COI.

The COI that links the ISUT and the environment simulator can either be
a standardized digital transducer interface or an arbitrary transducer-specific

VII

interface (e. g., an analog interface). Deterministic interaction between the HiL
simulator and the ISUT across the COI is an essential aspect for any kind of
interface.

In the following we introduce a structured development approach with generic
components that can be tailored to establish the coupling between an HiL sim-
ulator and a specific ISUT. Hence, we separate between those components that
emulate the COI, e. g., via a 4-15mA interface, a fieldbus, or direct I/O, and those
components that are used to execute part of a distributed simulation model but
do not directly interact with the ISUT.

Following this separation, our HiL simulation framework involves a distrib-
uted environment simulator consisting of a set of so-called frontend simulation
components that control the physical interaction between the environment simu-
lation and the ISUT, as well as a set of so-called backbone simulation components
that are used to execute (part of) the environment simulation model. Addition-
ally, a time-sync master component is employed in the HiL simulation framework.
The time-sync master component is part of the environment simulator, i. e., it
triggers the individual backbone and frontend simulation components accord-
ing to a pre-defined schedule. Furthermore, the time-sync master is a (passive)
member of the ISUT, i. e., it synchronizes its time-base with the time-base of the
ISUT. Hence, the time-sync master establishes synchronism between the ISUT
and the environment simulator without a probe effect with respect to the ISUTs
execution.

As depicted in figure 2, the interaction of nodes of an integrated system
with their environment is realized via an arbitrary transducer interface including
value/time-dependent analog and/or digital direct I/O as well as standardized
fieldbus interfaces. A frontend simulation component connects to nodes of the
integrated system for the purpose of interacting with these nodes via a particular
transducer interface. Frontend simulation components and backbone simulation
components collectively execute the distributed simulation model of the envi-
ronment of the integrated system.

A frontend simulation component requires updates of simulation values that
are provided by one or several backbone components. Based on these simulation
values, the frontend simulation component determines the I/O signal that is to
be provided to the ISUT. Both the control logic that calculates the required
I/O signal based on the simulation values and the physical wiring are part of
the frontend simulation component. Thus, a change in the interface specification
of the ISUT directly affects the frontend simulation component, but not nec-
essarily the backbone simulation component as long as the frontend simulation
components can be provided with all relevant simulation values in time.

The availability of separate frontend simulation components in an HiL sim-
ulation is particularly advantageous when it comes to incremental testing of an
integrated system. Starting with a single node, a stepwise inclusion of jobs of
the integrated system in the HiL simulation is required. At each step, the en-
vironment model of the real-time system is simulated (by backbone simulation
components) and the coupling between this simulation and the actual ISUT is

VIII

Fig. 2. HiL simulation with an Integrated System

established with frontend simulation components. With separate frontend sim-
ulation components it is possible to scale the HiL simulation from a small ISUT
(e. g., a single node with only one job) up to a complete integrated system by
adding additional frontend simulation components as required.

For the realization of the frontend simulation components of the environ-
ment simulator, we use Smart Virtual Transducers (SVTs) [27]. An SVT im-
plements two interfaces – a standardized digital interface to a time-triggered
transducer network (e. g., the Smart Transducer Interface of the Object Man-
agement Group [28]) and a transducer-specific interface. The digital interface
is used to interact with the backbone simulation components and with other
SVTs (i. e., frontend simulation components). The transducer-specific interface
resembles the interface of a sensor or actuator element for coupling the SVT
with direct I/O of the ISUT. Furthermore, an SVT can implement a certain
fieldbus interface. In that case, the SVT would act as a gateway between the
environment simulator and a fieldbus of the ISUT.

As depicted in figure 3, an SVT consists of a processor core, memory, a UART,
as well as the digital and analog I/O necessary to emulate a specific transducer
of the ISUT. The prototype given in figure 3 includes an Atmel ATMega168
microcontroller and an Analog Devices 8-Bit DA converter (AD5330).

IX

Fig. 3. Smart Virtual Transducer (SVT)

4.2 Reproducibility of Simulation Results

Deterministic interaction between the environment simulator (i. e., the network
of backbone and frontend simulation components) and the respective ISUT
(i. e., the integrated system) is a major concern in order to guarantee repro-
ducible results of an HiL simulation run. Thereby, deterministic interaction re-
lates to the functional (i. e., message value or signal size) and the temporal
domain (i. e., instant of interaction).

Given two simulation runs (sim1, sim2) with an environment simulator, this
environment simulator offers deterministic interaction with an ISUT in the tem-
poral domain if it can be guaranteed that a set of inputs from the ISUT to
the environment simulator at defined instants12 cause the same set of outputs
from the environment simulator to the ISUT at the same instants during both
simulation runs. More precisely, deterministic interaction means that:

– if the simulation runs simk (k = 1, 2) start at instants tbegin[simk] and finish
at instants tend[simk], and

– the environment simulator receives exactly the same inputs from the ISUT
at all instants tbegin[simk] + d (0 ≤ d ≤ tx[simk]− tbegin[simk]) during the
interval [tbegin[simk], tx[simk]],

– given that tbegin[simk] ≤ tx[simk] ≤ tend[simk] and tx[sim1]−tbegin[sim1] =
tx[sim2]− tbegin[sim2],

– then it follows that the (interface) state S[sim1] of the environment simulator
during simulation run sim1 equals the (interface) state S[sim2] of the envi-
ronment simulator during simulation run sim2, at all instants tbegin[simk]+i
(0 ≤ i ≤ tx[simk]−tbegin[simk]), i. e., S[sim1]tbegin[sim1]+i = S[sim2]tbegin[sim2]+i

(refer to figure 4).

In order to achieve reproducible results in our proposed architecture, the
following requirements have to be fulfilled:

12 These instants relate to a common time-base that is established by synchronizing
the time-base of the environment simulator to the time-base of the ISUT.

X

Fig. 4. Interface State of HiL Simulator

1. The HiL simulator must share a common time base with the ISUT and have
a priori knowledge about the time when a sensor is read or an actuator is
set by the ISUT.

2. The values exchanged across interfaces between HiL simulator and ISUT
must be deterministic.

3. The ISUT and the HiL simulator may not exhibit intrinsic sources of inde-
terminism, e. g., by suffering from race conditions.

The proposed architecture can satisfy the first requirement by sharing its
existing global timebase with the HiL simulator. Furthermore, the DECOS ar-
chitecture supports a time-triggered action model the allows the prediction of
the instants of accessing a sensor’s or actuator’s value.

The second requirement depends on the employed interfaces. While the digi-
talization of a pure analog value, e. g., by an ADC, always constitutes a possible
source of indeterminism, a DAC – ADC system may behave deterministically,
when (i) there is no sampling while the current value is changing to a new one
and (ii) each value generated by the DAC can be interpreted by the ADC in
a non-ambiguous way. (i) is already solved by the synchronization mechanisms
and the temporal determinism of our architecture while (ii) in general requires
a careful design of the analog path. For sensor types with only few detection
results, e. g., a binary on/off detector, (ii) can be easily fulfilled.

Regarding the HiL simulator, we can establish deterministic behavior due
to the usage of a time-triggered communication and execution scheme. Deter-
ministic construction of the ISUT lies outside the sphere of control of the HiL
simulator and requires a deterministic architecture. Our proposed case study
builds on a time-triggered architecture that avoids sources of indeterminism by
design and thus fully satisfies the third requirement.

5 Case Study

5.1 Exemplary Application Using the Integrated Architecture

The case study used to exemplify the HiL simulation environment includes two
automotive DASs (which are part of a larger automotive electronic system):

XI

FE Vehicle
Speed

Node 1

TT Comm. Controller

DECOS Middleware

Obstacle
Detector Speaker

Node 2

TT Comm. Controller

DECOS Middleware

Dist.
Sensor Gateway Navi.

Node 3

TT Comm. Controller

DECOS Middleware

Vehicle
Speed Display Speaker

Node 4

TT Comm. Controller

DECOS Middleware

Speaker Radio SpeakerDist.
Sensor

Node 5

TT Comm. Controller

DECOS Middleware

Accel.
Sensor

DVD
Player

Backbone
Simulation
Component

Backbone
Simulation
ComponentUltrasonic 1

Ultrasonic 2

FE Speaker
1

FE Rear
Ultrasonic 2

FE Speaker
2

FE Rear
Ultrasonic 1

Master

Node 2

Node 1
Ultrasonic 3

Ultrasonic 4

Node 3

Node 4

Fig. 5. Exemplary Integrated System with Environmental Simulation

– Multimedia DAS. Car drivers are no longer satisfied with cars being sim-
ple means of transportation. For this reason, today’s luxury cars contain
multimedia functionality such as DVD players, high-end audio systems, and
GPS navigation systems. In addition, voice control and hands-free speaker
phones relieve the driver of concentrating on multimedia devices instead of
traffic.

– Park assist DAS. This DAS implements a parking aid with ultra-sonic
sensors. In case a threshold for a minimum distance is exceeded, the DAS
produces an acoustic alarm signal. Therefore, the park assist DAS encom-
passes four jobs reading inputs from ultra-sonic distance sensors. In addition,
the DAS contains an obstacle detector job, which reads the distance mea-
surements from the four other jobs and determines whether an alarm signal
should be produced. In this case, the acoustic alarm signal is transferred via
a gateway to the speaker jobs of the multimedia DAS.

Figure 5 depicts a possible realization of these DASs using the DECOS archi-
tecture. Each node computer hosts multiple jobs, which can belong to different
DASs (such as the multimedia or park assistant DAS).

5.2 Exemplary Environmental Simulation

In the scope of the case study we exemplarily focused on two kinds of transducers,
namely ultra-sonic sensors for distance measurement of the park assist DAS
and loudspeakers of the multimedia DAS. Hence, the interaction between the
environment simulation and the integrated system (i. e., the ISUT) across the
COI involves SVTs that emulate the behavior of an ultra-sonic sensor as well as
SVTs that capture and process the signals provided by the audio system jobs of
the ISUT.

As depicted in figure 5, the setup of the environment simulation system
additionally involves a frontend simulation component that receives the actual
vehicle speed from the ISUT (i. e., FE vehicle speed) and a master node that

XII

controls the operation of the involved SVTs (i. e., Master) and that synchronizes
the time-base of the environment simulation to the time-base of the ISUT.

Within the prototypical realization of the environment simulation system, we
use TTP/A [29] to interconnect the deployed SVTs. The time-triggered fieldbus
protocol TTP/A is an implementation of the OMG ST interface standard, in-
cluding the time-triggered transport service. TTP/A is a round based master
slave protocol where multiple nodes of a TTP/A cluster arbitrate a shared bus
according to a time division multiple access (TDMA) scheme.

In the current implementation we prototypically realized an SVT with a sim-
plified interaction pattern that consists of digital samples for acoustic pressure.
This SVT can be used to emulate a loudspeaker of the multimedia DAS. For the
ultra-sonic sensors we realized SVTs that emulate a Polaroid 6500 series sonar
ranging transducer [30]. A Polaroid 6500 ultra-sonic transducer can be instru-
mented to operate in single-echo mode. In this mode of operation the INIT input
of the transducer is set to high in order to start the transmission of an acoustic
signal (16 pulses at 49.4 kHz with 400 volt amplitude). As soon as the echo of
this acoustic signal is received back, the ECHO output of the transducer is set
to high. The interval between INIT high and ECHO high is proportional to the
distance to the measured object.

Each ultrasonic SVT is periodically provided with the actual distance value
from a backbone simulation component. Regarding the physical interconnection
to the ISUT, an SVT offers an INIT and an ECHO port (digital I/O of the
SVT). The ultrasonic SVT polls the INIT input with high frequency. As soon
as the input is set to high, a timer is set in accordance with the current distance
value. This timer is used to set the ECHO signal of the SVT to high after a
specified amount of time.

6 Conclusion

In this paper we outlined a distributed HiL simulator that consists of so-called
frontend simulation components (FSCs) and backbone simulation components
(BSCs). An FSC connects to an Integrated System Under Test (ISUT) across
a well-defined interfaces which can either be a fieldbus interface, an arbitrary
transducer interface or a physical transducer. A BSC is used for the execution of
parts of a distributed environment simulation. For the interconnection of FSCs
and BSCs we propose a standardized digital transducer interface, e. g., the OMG
STI.

Besides showing an exemplary application of the proposed concept in the
automotive domain (i. e., park assistant system), we discussed the prerequisites
to achieve reproducible results in our proposed architecture. These prerequisites
are: (a) synchronous operation of the HiL simulator and the ISUT, (b) deter-
ministic exchange of values across the COI, and (c) no sources of indeterminism
within the ISUT and the HiL simulation system.

Our approach supports the verification and validation activities in an in-
tegrated architecture, e. g., DECOS, IMA, AUTOSAR, by realizing a generic

XIII

interface for an FSC. Such a generic interface is provided by the concept of
a Smart Virtual Transducer (SVT) that replaces the physical transducers of
the ISUT. Hence, we support non-intrusive, deterministic interaction between
an HiL simulator and an ISUT in order to guarantee reproducible test results.
Moreover, this approach offers the possibility to test an integrated system at the
physical interface. Hence, it is possible to perform non-intrusive (black box) tests
which is particularly important for an integrated system where different vendors
provide closed intellectual property software or hardware/software components.

Acknowledgments

This work has been supported in part by the European IST project ARTIST2
under project No. IST-004527, the European IST project DECOS under project
No. IST-511764, and DOC [doktorandenprogramm der österreichischen
akademie der wissenschaften]. We would like to thank Bernhard Wenzl for
proofreading an earlier version of this paper.

XIV Subject Index

References

1. R. Obermaisser, P. Peti, B. Huber, and C. El Salloum. Decos: An integrated time-
triggered architecture. e&i journal (Journal of the Austrian professional institution
for electrical and information engineering), 3, March 2006.

2. AUTOSAR GbR. AUTOSAR – Technical Overview V2.0.1, June 2006.

3. Aeronautical Radio Incorporated (ARINC), Annapolis, MD, USA. ARINC Speci-
fication 651: Design Guide for Integrated Modular Avionics, November 1991.

4. National Instruments Corporation. LabVIEW FPGA in hardware-in-the-loop sim-
ulation applications, July 2003.

5. X. Wu, S. Lentijo, A. Deshmuk, A. Monti, and F. Ponci. Design and implemen-
tation of a power-hardware-in-the-loop interface: a nonlinear load case study. In
Applied Power Electronics Conference and Exposition (APEC) 2005, pages 1332–
1338. IEEE, March 2005.

6. R. Pallierer. Validation of Distributed Algorithms in Time-Triggered Systems by
Simulation. PhD thesis, Technische Universität Wien, Institut für Technische In-
formatik, Treitlstr. 3/3/182-1, 1040 Vienna, Austria, 2000.

7. J. Ehret. Validation of Safety-Critical Distributed Real-Time Systems. PhD thesis,
Technische Universität München, Fakultät für Elektrotechnik und Information-
stechnik, Arcisstrae 21, 80333 München, Germany, 2003.

8. D. Henriksson, A. Cervin, and K.E. Årzén. TrueTime: Real-time control system
simulation with MATLAB/Simulink. In Proceedings of the Nordic MATLAB Con-
ference, Copenhagen, Denmark, October 2003.

9. W. Schütz. Testing distributed real-time systems: An overview. Research Report
12/1995, Technische Universität Wien, Institut für Technische Informatik, Treitl-
str. 1-3/182-1, 1040 Vienna, Austria, 1995.

10. W. Fleisch, Th. Ringler, and R. Belschner. Simulation of application software
for a TTP real-time subsystem. In European Simulation Multiconference (ESM),
Istanbul, Turkey, June 1997.

11. T. Galla. Cluster Simulation in Time-Triggered Real-Time Systems. PhD the-
sis, Technische Universität Wien, Institut für Technische Informatik, Treitlstr.
3/3/182-1, 1040 Vienna, Austria, 1999.

12. M. Schlager. A simulation architecture for time-triggered transducer networks. In
Proceedings of the First Workshop on Intelligent Solutions for Embedded Systems
(WISES’03), pages 39–49, Vienna, Austria, June 2003.

13. Z. Papp, M. Dorrepaal, and D.J. Verburg. Distributed hardware-in-the-loop sim-
ulator for autonomous continuous dynamical systems with spatially constrained
interactions. In Proceedings of the IEEE International Parallel and Distributed
Processing Symposium, Nice, France, April 2003.

14. Z. Li, M. Kyte, and B. Johnson. Hardware-in-the-loop real-time simulation inter-
face software design. In Proceedings of the IEEE Intelligent Transportation Systems
Conference, pages 1012–1017, Washington, D.C., USA, October 2004.

15. Altera Corporation. DSP Builder – user guide. Available at http://www.altera.com,
April 2006.

16. D.J. Burns and A.A. Rodriguez. Hardware-in-the-loop control system development
using MATLAB and xPC. Report, Department of Electrical Engineering, Center
for System Science and Engineering, Arizona State University, May 2002.

17. Applied Dynamics International. Distributed HIL simulation. Available at
http://www.adi.com, 2005.

Subject Index XV

18. TTTech Computertechnik AG, Schönbrunner Strasse 7, A-1040 Vienna, Austria.
Time-Triggered Protocol TTP/C – High Level Specification Document, July 2002.

19. FlexRay Consortium. BMW AG, DaimlerChrysler AG, General Motors Corpora-
tion, Freescale GmbH, Philips GmbH, Robert Bosch GmbH, and Volkswagen AG.
FlexRay Communications System Protocol Specification Version 2.1, May 2005.

20. N. Suri, C.J. Walter, and M.M. Hugue. Advances In Ultra-Dependable Distributed
Systems, chapter 1. IEEE Computer Society Press, 10662 Los Vaqueros Circle,
P.O. Box 3014, Los Alamitos, CA 90720-1264, 1995.

21. M. Schlager, W. Herzner, A. Wolf, O. Gründonner, M. Rosenblattl, and
E. Erkinger. Encapsulating application subsystems using the DECOS core OS.
In The 25th International Conference on Computer Safety, Security and Reliabil-
ity (SAFECOMP), pages 386–397, Gdansk, Poland, September 2006.

22. B. Huber, P. Peti, R. Obermaisser, and C. El Salloum. Using RTAI/LXRT for
partitioning in a prototype implementation of the DECOS architecture. In Proc.
of the Third Int. Workshop on Intelligent Solutions in Embedded Systems, May
2005.

23. J. Rushby. An overview of formal verification for the time-triggered architecture. In
Formal Techniques in Real-Time and Fault-Tolerant Systems, volume 2469 of Lec-
ture Notes in Computer Science, pages 83–105, Oldenburg, Germany, September
2002. Springer-Verlag.

24. A. Ademaj, H. Sivencrona, G. Bauer, and J. Torin. Evaluation of fault handling of
the time-triggered architecture with bus and star topology. In Proc. of Int. Con-
ference on Dependable Systems and Networks, pages 123–132, 2003.

25. ATIS Committee T1A1, American National Standards Institute, Inc. Telecom
glossary 2000, February 2001. Available at http://http://www.atis.org/tg2k/.

26. H. Kopetz, E. Fuchs, D. Millinger, and R. Nossal. An interface as a design ob-
ject. 2nd IEEE International Symposium on Object-Oriented Real-Time Distrib-
uted Computing (ISORC ’99), 2-5 May 1999, May 1999.

27. M. Schlager, W. Elmenreich, and I. Wenzel. Interface design for hardware-in-the-
loop simulation. In Proceedings of the IEEE International Symposium on Industrial
Electronics (ISIE’06), pages 1554–1559, Montréal, Canada, July 2006.

28. OMG. Smart Transducers Interface. Specification ptc/2002-05-01, Object Man-
agement Group, May 2002. Available at http://www.omg.org/.

29. H. Kopetz, M. Holzmann, and W. Elmenreich. A universal smart transducer inter-
face: TTP/A. International Journal of Computer System Science & Engineering,
16(2):71–77, March 2001.

30. B. Wirz. Technical specifications for 600 series instrument grade electrostatic trans-
ducer. Available at http://controls.ae.gatech.edu/gtar/electronics/6500.pdf, 1997.

