
©Hindawi, 2010. This is the author’s version of the work. Personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purpose or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the copyright holder. The definite version is published at the Journal of
Robotics, ISSN: 1687-9600.

Evolving Neural Network Controllers for a Team of
Self-organizing Robots

István Fehérvári and Wilfried Elmenreich
Mobile Systems Group/Lakeside Labs

Institute for Networked and Embedded Systems
University of Klagenfurt, Klagenfurt, Austria

Abstract
Self-organizing systems obtain a global system behavior
via typically simple local interactions among a number
of components or agents, respectively. The emergent ser-
vice often displays properties like adaptability, robust-
ness, and scalability, which makes the self-organizing
paradigm interesting for technical applications like coop-
erative autonomous robots. The behavior for the local in-
teractions is usually simple, but it is often difficult to de-
fine the right set of interaction rules in order to achieve a
desired global behavior. In this paper we describe a novel
design approach using an evolutionary algorithm and ar-
tificial neural networks to automatize the part of the de-
sign process that requires most of the effort. A simulated
robot soccer game was implemented to test and evaluate
the proposed method. A new approach in evolving com-
petitive behavior is also introduced using Swiss System
instead of the full tournament to cut down the number of
necessary simulations.

Keywords: Artificial neural networks, Cooperative Robots,
Self-organizing Systems, Evolutionary algorithm

1 Introduction
The concept of systems consisting of multiple au-
tonomous mobile robots is attractive for several rea-
sons [1]: Multiple cooperative robots might be able to
achieve a task with better performance or with lower cost.
Moreover, loosely coupled distributed systems tend to
be more robust, yet more flexible than a single powerful
robot performing the same task. A benefit of the collab-
orative interaction of mobile robots can be an emergent
service, i.e., a progressive result that is more than the sum
of the individual efforts [2]. A swarm of robots can thus
build a self-organizing system [3].

The continuous technical development in robotics dur-
ing the last decades has provided us the hardware for
swarms of small, cheap autonomous devices [4, 5, 6].

However, designing the behavior and interactions among
the robots remains a very complex task. Using a stan-
dard top-down design approach with fixed task decompo-
sitions and allocation typically leads to systems working
only for a small set of parameters. On the other hand,
effects like changing environments or breakdowns and
faults of hardware require a robust and flexible solution
that provides a useful service for many possible system
states.

An alternative to the classical design approach is to or-
ganize the robots as a self-organizing system performing
the intended task. Thus, the robots achieve a global sys-
tem behavior via simple local interactions without cen-
tralized control [7]. As shown by many examples in na-
ture, simple rules for interactions can emerge to quite
complex behavior while being scalable and robust against
disturbances and failures. This would allow for simple
control systems like for example having a small Artificial
Neural Network (ANN) on the particular robots.

Unfortunately, there is yet no straight-forward way for
the design of these rules so that the overall system shows
the desired properties. Typically, the emergent service is
really hard, or even impossible to predict. Thus, finding
a set of rules that causes the overall system to exhibit the
desired properties presents a great challenge to the system
designers. The main problem is that a small change of
a parameter might lead to unexpected and even counter-
intuitive results [8, 9].

To design a self-organizing system with the desired
emergent behavior, it is crucial to find local rules for the
behavior of the system’s components (agents) that gener-
ate the intended behavior at system scale. In many cases,
this is done by a sumptuous trial and error process which
in case of systems with high complexity is not efficient or
even unfeasible. Parameter-intensive systems also suffer
from the unpredictability of the results due to unexpected
dependencies between parameters.

In this paper we discuss the application of evolutionary
methods for designing an ANN-based control system for
a team of self-organizing robots. In particular, we tackle

1

the interface design between neural controller and robot
and elaborate the particular influence of fitness function
parameters on the results. As a case study for the ap-
proach, we describe the evolution of the neural control
program for simulated soccer robots.

The paper is structured as follows: In the next section
we give an overview about self-organization and systems
presenting the background of this paper will be given.
Then the design steps as a general approach with the evo-
lutionary algorithm will be described. Section 4 focuses
on the practical evaluation of the approach, presenting
the setup of the robot soccer simulation while Section 5
shows and explains the acquired results. Related work is
discussed in Section 6. This paper is concluded in Section
7.

2 Self-organizing Systems

The concept of self-organizing systems (SOS) was first
introduced by W. Ross Ashby [10] in 1947 referring to
pattern-formation processes taking place within the sys-
tem by the cooperative behavior of its individuals. These
could best be described by the way they achieve their or-
der and structure without having any external directing
influences. There are several definitions for SOS [11],
the following was formulated on the Lakeside Research
Days’08 [7]:
“A self-organizing system (SOS) is a set of entities that
obtains global system behavior via local interactions
without centralized control.”
An example could be a team of workers acting on their
own following a mutual understanding. If there was any
external influence like a common blueprint or a boss giv-
ing orders it would result in no self-organization. Many
examples of SOS can also be observed in nature, e.g. a
school of fish where each individual has knowledge only
about its neighbors and having no leader amongst them.
The key part is the communication between the individ-
uals; the way they satisfy their own goal such as getting
close, but not too close to other fish in the school while
trying to find food in the water.

Furthermore it is important to note that the emergent
property cannot be understood by simply examining the
system’s components in isolation, but requires the con-
sideration of the interactions among the components.
This interaction is not necessarily direct, it can be indi-
rect as well when one component modifies the environ-
ment which then influences other components [12]. This
presents a continuous mixture of positive and negative
feedback in the behavior.

By describing self-organizing systems the following
advantages can be observed: These systems are often
very robust against external disturbances; it is clear that a

failure of one component rarely results in a full collapse.
Also adaptability and scalability can be noticed mean-
ing a dynamical behavior and a flexibility in the number
of components. It is also important to note that usually,
once the local rules of the SOS are found, the implemen-
tation takes less effort compared to a centralized solu-
tion. These properties make SOS an interesting, though
difficult to design, option for the decentralized control of
complex systems. Although there are some ideas for de-
signing such systems, there is no general methodology
yet explaining how this should be done.

3 Evolutionary Approach to Design
SOS

This section describes the proposed method giving SOS
design engineers a tool. The process starts by defining
the main goals: what are the expectations from our sys-
tem. The next step is to build an evolvable representa-
tion of local behavior. Our approach uses an evolution-
ary algorithm to explore the solution space. Therefore,
the evolvability of the representation is required, which
means that operators like mutation and/or recombination
must be defined on the representation. Instead of using a
standard representation like a bit string as in genetic al-
gorithms, the applied algorithm employs mutation and re-
combination functions which are representation-specific.
We have implemented a Java program called FREVO1

which is an open-source framework for evolutionary de-
sign. It identifies and separates the key components,
such as the problem definition, candidate representation
and the optimization method. As depicted in Fig. 1, our
framework supports different representations, where each
must embed specific functions for mutation and combi-
nations of candidates. The advantage of this approach
is that the search space can be reduced since operations
which likely produce unfeasible solutions are filtered. On
the other hand, there is an increased effort for the imple-
mentation of a new representation by adding the specific
mutation/recombination functions. Usually, control soft-
ware is written in programming languages (JAVA, C, etc.)
which are inappropriate for phenotypical mutation and
recombination operators. One notable exception could
be the LISP programming language which is used for the
representation of an evolvable algorithm in [13]. Unlike
standard programs, artificial neural networks (ANNs) or
representations based on fuzzy rules are qualified for this
task. Structure and setup of this representation is also a
question; it can be trained by the evolutionary algorithm
or defined a priori.

In case of ANNs reinforced learning is needed, since

1http://www.frevotool.tk

2

Figure 1: Components of the FREVO framework: The
agent representation is optimized by the evolutionary al-
gorithm to maximize the fitness for the given problem

we have to deal with belated rewards we get after a sim-
ulation of many steps of the revised ANN. Thus, the
standard back propagation algorithm cannot be applied
to program the ANN’s weights. At this point we need
our goals to be formulated as rewards for reinforcing the
candidates. To make the learning process smoother we
propose a step by step approach decomposing the over-
all goal into smaller achievements weighted according to
their significance. A typical example would be an object
manipulation task for a robot where the three subtasks
would be: finding, grabbing and then manipulating the
object. In the next chapter an example of this approach
will be given.

With a simulation environment acting as a playground,
the evolutionary algorithm can start evolving the possi-
ble candidates. Typically, a fitness value can be deduced
from the simulation results. This fitness value is then used
in the evolutionary algorithm to decide on the fittest in-
dividuals. An example for such a fitness value could be
the throughput of a given setup of a wireless network. In
many cases an absolute fitness value cannot be assigned
especially when a competitive emergent behavior is ex-
pected. In order to get a ranking of the individuals it is
necessary to play a tournament among the candidates of a
population. In a native approach, the number of pairings
equals n(n− 1)/2; n being the number of individuals in
a population. In case of long simulations the time can be
cut effectively by using the Swiss System, a pairing sys-
tem used to organize (chess) tournaments which yield a
ranking with a minimum number of pairings [14] instead
of full tournament. Detailed description can be found in
the next section.

4 Case Study

As a case study, we have defined the problem of teaching
soccer to a team of autonomous robots in a 2D environ-
ment similar to the official RoboCup Simulation League.
This problem provides a rich testbed domain for the study
of control, coordination and cooperation issues described
in [15] [16]. We also presented some early results for
this problem in [17]. In the following we give a brief de-
scription of the actual problem of simulated robot soccer.
Then, we present the representations of the particular ele-
ments according to the components depicted in Figure 1.

4.1 Problem Description

The problem is evaluated via a robot soccer simulator
with simple physics, similar to the official simulator used
for the RoboCup simulation league. In contrast to the
official simulator, ours does not include the roles of a
referee or goalkeeper and there is a simulated boundary
around the field, which avoids situations where the ball
goes out of bounds. The main change with respect to
our approach is that our simulation does not run in real
time (except for a built-in demonstration mode), but as a
discrete event simulation that runs with maximum com-
putation speed. This greatly reduces the actual time for
performing the evolution. The chosen problem consists
to the class of competitive evaluation, i.e., we can only
compare the relative fitness of two candidate solutions by
simulating a match between them.

A simulation run consists of initially placing a con-
figurable number of soccer players (typically 2x11) on a
field and to simulate a game where each player can accel-
erate with a given strength towards a given direction and,
if being close enough to the ball, can kick the ball with a
given strength towards a given direction. One game lasts
for 300 steps which yields 60 real-time seconds.

4.2 Optimization method

We used an evolutionary algorithm to evolve the con-
trollers of the soccer players. The implementation of the
optimization method is based on the one presented by El-
menreich and Klingler in [18]. The size of the population
was set to 60 and the length of the simulation was fixed at
500 generations. The parameters of the genetic operators
can be seen in Table 1.

4.3 Candidate Representations

The candidates for the evolutionary algorithm were re-
alized as ANNs. Training has been applied to optimize
the weights and biases of the neural network. We tested

3

Population size 60

Number of generations 500

Percentage of elite selection 15

Percentage of mutations 40

Percentage of crossover 30

Percentage of randomly created offsprings 5

Percentage of randomly selecting an offspring from
previous generation

10

Table 1: Parameters of the evolutionary algorithms

two different candidate representations in our case study,
namely a fully connected ANN and a three-layered ANN.

The fully connected network is a time-discrete, recur-
rent artificial neural network. Each neuron is connected
to every other neuron and itself via several input connec-
tors. Each connection is assigned a weight that is a float-
ing value and each neuron is assigned a bias. The prob-
lem requires 16 inputs and 4 outputs. Additional “hid-
den” neurons are added in order to increase the expres-
siveness and the number of representable states.

The three-layered network only provides forward con-
nections from the input nodes (the input layer) to the
nodes in the hidden layer and forward connections from
the hidden layer to the output layer.

In most cases, three-layered networks are employed
for ANN applications, since they can be programmed via
back propagation. However, our setup provides only be-
lated rewards, that is feedback after a simulation involv-
ing many different actions of the ANN controller. The
evolutionary algorithm works with both representations,
so we can easily include the fully connected network.

The implementation of both types is almost identical,
the only difference is that the three-layered network only
features a subset of connections per neuron. At each
step, each neuron i builds the sum over its bias bi and
its incoming connection weights wji multiplied by the
current outputs of the neurons j = 1, 2, ..., n feeding the
connections. Weights can be any real number, thus have
either an excitatory or inhibitory effect. The output of
the neuron for step k + 1 is calculated by applying an
activation function F :

oi(k + 1) = F (
n∑

j=0

wjioj(k) + bi)

where F is a simple linear threshold function

F (x) =

 −1.0 if x ≤ −1.0
x if − 1.0 < x < 1.0

1.0 if x ≥ 1.0

As described below in detail, the output of the output

Figure 2: A possible wiring of the neural network show-
ing the groups of inputs, outputs and hidden neurons.
Connections with stronger weight are indicated with bold
lines while ones with lower weight are colored with grey.

neurons is further scaled to match the input range of the
actuators.

4.4 I/O interface between Simulation and
Controllers

In the case study, the information passed to the simula-
tion is predefined; it consist of the strength and direction
for the players’ move and, in case the player can kick the
ball, the strength and direction of the kick. The infor-
mation provided by the simulation is also determined; it
consists of the position of the ball (if visible), a list of
visible teammates, a list of visible opponent players, and
information about the distance to the field’s (upper, lower,
left, right) border. The position of the goal is given indi-
rectly by combining the distance to the borders with the
knowledge that the goal resides in the middle of the side-
borders.

However, there are different ways to pass this infor-
mation into the ANN. In general, the ANN will have a
set of so-called input neurons, which activate their output
according to a given input from external sources. Respec-
tively, a number of output neurons is used to export infor-
mation from the network. Finally, some unspecified or
hidden neurons are added. All neurons are interconnected
by directed weights, which are evolved in the framework
(See Figure 2).

Since the number of neurons defines the search space,
the number of neurons should not become too large. On
the other hand, input neurons should be defined in a way
that their result is easily interpretable by the ANN. For
example in [18], we modeled a distance sensor that is pe-
riodically changing its orientation via several input neu-
rons, each representing the input for a particular orienta-
tion.

In the robot soccer example, the inputs are arranged

4

Figure 3: A group of input neurons detecting the ball

in groups of four neurons. Each group is responsible
for communicating the detection of a particular object
class (ball, teammate, opponent, border) and consists of
a north, south, east and west neuron.

If the nearest object of that class is in a particular quad-
rant, lets say north-west, then the north neuron and the
west neuron are activated inversely proportionally to the
components of the vector to the object. So, if in our ex-
ample the ball is towards the north-north-west, the north
neuron gets a high activation and the west neuron a mod-
erate one (See Figure 3).

For the output neurons, we tested two setups: in the
first setup, the outputs are scaled to [−100%, 100%] and
[−180, +180], respectively and interpreted as polar coor-
dinates for the move and kick vectors. The second setup
interprets the neurons as being the x and y components
of a vector in cartesian coordinates. In general, both ap-
proaches are expected to work, since they transport ex-
actly the same information and the ANN will be evolved
to adjust to the given representation.

4.5 Fitness evaluation

Typically, when the task is more complex the definition
of the fitness function is not trivial. In the case of a soccer
game the primary aim is to train teams scoring the most
goals during the given time interval. However, this prob-
lem is far too complicated for teams, initially composed
of random ANN controllers, to expect improvement over
generations just by rewarding them by the final number
of goals they score in each game. The idea here is to de-
compose the overall goal into smaller achievements (so-
called guidelines) and let the teams fulfill them one after
the other. This method tries to ensure a smooth learning
process assuming some preliminary knowledge or ideas
about the solution. The guidelines are assigned a weight
to setup a hierarchical order. It means a task with smaller
weight is less important, but will most likely be accom-
plished before another tasks with higher value. This is
because the second one is too complex to be achieved
without learning the first one. Figure 4 shows the applied

i Pi Wi

p field distribution 100

bd distance to the ball 103

k number of kicks 2 · 104

fk number of false kicks (ball is kicked
out of bounds)

104

bg ball distance to the opponent’s goal 105

s number of scores 4 · 106

Table 2: Parameters of the fitness function

tasks in their respective order in our simulation.

At the beginning of the training we wanted the teams
to learn that a good distribution on the field might lead
to good overall play. Therefore, we introduced the first
guideline (field distribution). It was implemented by
defining 64 evenly distributed checkpoints on the field
and counting the number of controlled points every 5 sec-
onds for both teams. A point is controlled by a team if
it has the nearest player to this point. The accumulated
points are added to the final fitness value. The second
guideline was an advice for the teams to move their play-
ers closer to the ball. The distance of the nearest player
for both teams to the ball is measured and compared ev-
ery 4 seconds. The team having a player closer to the
ball earns one point. At the end of the game this point
is weighted and also added to the final fitness. The num-
ber of kicks is also counted with a weight however only
the first 10 kicks are taken into account to create an up-
per bound and to prevent dead team strategies where they
only pass the ball back and forth. Concerning the kick-
ing direction the ball distance to the opponents goal is
also measured and calculated every 2 game seconds in
the same manner as guideline two. The highest weight is
assigned to the number of scores, being more significant
than the other fitness components. Therefore, we define
the fitness function as the following equation:

F = WpPp+WbdPbd+(WkPk−WfkPfk)+WbgPbg+WsPs

where W and P stand for the weights and the points
respectively. Table 2 explains the corresponding indexes
and values.

Figure 4: Weighted fitness

5

4.6 Tournament Ranking with Swiss Sys-
tem

Evolving competitive team behavior is a good example
where one cannot assign a simple absolute fitness value.
To rank the teams one solution is to play a tournament
among the candidates in each generation (assuming one
population with n candidates). A full tournament would
mean n(n− 1)/2 number of pairings when n is the num-
ber of entities in the population. In case a simulation run
takes too much time or a high number of generations is
needed, this approach can be very ineffective. For exam-
ple, a population of 50 individuals would require 1225
runs for each generation. The proposed solution tries to
minimize the number of necessary pairing using Swiss
System style tournament [19]. It reduces the required
number to dlog2 nen

2 which is in the mentioned case only
150 games (see Figure 5). Inspired by the official FIDE2

rules for chess tournaments we established the following
system:

In each game the winner gets two points, loser gets
zero, in case of a draw both get one point. After the
first round players are placed in groups according to their
score (winners in group "2", those who drew in group "1",
and losers in group "0"). The aim is to ensure that play-
ers with the same score play against each other. Since the
number of perfect scores is cut in half each round, it does
not take long until there is only one player left with a per-
fect score. The actual number of rounds needed is log2 n
to be able to handle n teams. In chess tournaments there
are usually many draws, so more players can be handled
(a 5 round event can usually determine a clear winner for
a section of at least 40 players, possibly more), although
in our simulation a draw is very unlikely. To avoid early
games between elite selected entities, the first round is
not randomized but cut into two halves where the first
half, consisting of teams which have performed well so
far, is playing against the second half.

The drawback of the Swiss system is that it is only de-
signed to determine a clear winner in just a few rounds.
Regarding other players, we have little information about
their correct ranking. For example, there could be many
players with 3-2 scores and it is hard to say which player
is better than the other, or whether a player with 3.5 points
is better than a player with 3 points. To help determine the
order of finish, a tiebreak method has been implemented.
In order to decide on the ranking for players having the
same score, we used a method developed by Bruno Buch-
holz [20]. There the score of the players’ opponents is
summed up thus favoring those who have confronted bet-
ter opponents. In case it is still undecided the sum is ex-
tended by the points of those opponents who have lost
against the player. This uncertainty in the ranking could

2http://www.fide.com

Figure 5: Total number of games in full tournament and
Swiss System

cause problems in the evolutionary algorithm when se-
lecting entities for survival to the next generation. In our
case elite selection was 15% while the Swiss System en-
sures only the first and last position to be ranked correctly,
thus the position of all other players carries also some ob-
scurity. After observing this effect in our simulation we
came to the conclusion that having a somewhat imprecise
selection among the top players slows down the process
just a little or not at all. To select entities for survival
we used a roulette wheel selection where the probabil-
ity being selected is directly proportional to the fitness,
in our case the ranking of the Swiss System. Since this
approach already carries some randomization some more
uncertainty did not make a crucial impact.

5 Results
We ran several simulations evolving soccer teams. In par-
ticular, we varied

• the type of representation (fully connected or lay-
ered ANN),

• the number of hidden nodes (2, 4, or 6),

• the type of the interface between simulation and
controllers.

We evolved each setting up to 500 generations. Un-
fortunately, there is no absolute fitness value for depict-
ing the quality of an evolved result. Only relative com-
parisons of teams by matching them in a simulation are
possible. For our evaluation, we picked the best result
of every 20th generation. These “champions” have than
been matched in a round-robin tournament against each
other in order to determine if there is a constant evolution
towards better gameplay and if one setting is performing
better than the other.

We found out that the design of the interface be-
tween simulation and controllers is of major importance
to the success of the evolutionary algorithm. The results

6

Figure 6: Tournament results of ANNs with different I/O interfaces

Figure 7: Box-and-whisker diagram of the repeated eval-
uation of different I/O models and different number of
hidden neurons for layered and fully connected ANNs

showed that the selection of the interface between sim-
ulation and controllers has a significant influence on the
speed of convergence and quality of the evolved solution.
When the output neurons were interpreted as polar coor-
dinates, the ANN controller needed to learn the coherent
semantics of polar coordinates, and, probably, learn to
emulate trigonometric functions. Figure 6 visualizes this
observation for both, layered and fully connected ANNs.
The figure depicts the results of a tournament of the above
mentioned champions for various settings. Most curves
are increasing over generations which depicts that the
gameplay of the teams has been improved by the evo-
lutionary algorithm.

As can be seen in the graphs, the systems using carte-
sian coordinates, even after several hundreds generations,
are ranked lower than almost every other systems using

Figure 8: Tournament results of fully connected vs. lay-
ered ANNs with cartesian interface

cartesian coordinates. So, in this case, yielding output in
polar coordinates posed a higher “cognitive complexity”
for the system than yielding output in cartesian coordi-
nates. Figure 7 shows a boxplot covering 10 different it-
erations of the evolutionary algorithms and also confirms
that the cartesian coordinate I/O model is significantly su-
perior to the polar coordinate model. This, however, may
be specific for the chosen problem and may be different
for other problems.

There was no significant effect of the number of hid-
den neurons on the overall performance or speed of con-
vergence. This could be explained by the fact that a less
complex ANN is already sufficient to learn the local in-
teractions producing a competitive behavior.

Figure 8 compares the different versions using polar
coordinates with each other and depicts that the fully con-
nected ANNs have evolved faster and to a better game-
play than the layered networks. The box plot diagram in
Figure 9 gives a statistic over 10 different runs of the evo-
lutionary algorithm. While it confirms that all fully con-
nected ANNs are typically better than the layered ANNs
with 2 hidden neurons, it also shows that a layered ANN
with enough neurons (that is 6 in that case) is in many it-

7

Figure 9: Box-and-whisker diagram of the repeated eval-
uation of fully connected vs. layered ANNs with carte-
sian interface

erations able to compensate for the lower number of con-
nections.

Thus, a fully connected network with 6 hidden neu-
rons and an I/O interface based on cartesian coordinates
evolved 400 generations or more performed best accord-
ing to the ability to win over others. Unfortunately, the
quality and elegance of the result cannot be measured in
this terms. By watching several games we observed the
following behavior3:

• the player nearest to the ball runs to the ball

• other players (of the same team) in the vicinity of
the ball also follow the ball, but they do usually not
converge to the same spot; instead they keep spread
out

• the player at the ball kicks it to a direction bringing
it nearer to the opponent’s goal

• players far from the ball spread out and build a de-
fense mesh in front of their own goal

• players sometimes tend to stick to opponent players
(man-marking)

Considering the relatively small size and complexity
of the neural network controllers, the versatility of the
emerging strategy is impressive. When both teams are
well evolved, the ball is passed over several stations until
the ball possession changes. Goals are scored roughly
every few hundred simulation steps.

6 Related Work
In literature, only a few proposals for designing self-
organizing systems can be found: First, a method pro-
posed by Gershenson [21] introducing a notion of “fric-
tion” between two components as a utility to design the
overall system using trial and error. Methods building

3A video of the evolution of the gameplay can be found at http:
//mobile.uni-klu.ac.at/demesos

on trials, even if they are improved by certain notions,
often suffer from counter-intuitive interrelationships be-
tween local rules and emergent behavior.

Observing and learning from nature is also proven to
be useful in several scenarios [22]. If an appropriate
model exists and is available for study, top-down ap-
proaches can be very effective by applying the same phe-
nomena. Conversely, bottom-up approaches adopt prin-
ciples from nature and use on a fundamental basis [23].

There is also an imitation-based approach proposed by
Auer [24] where the behavior of a hypothetical omni-
scient “perfect” agent is analyzed and mimicked in order
to derive the local rules. A good example would be a per-
fect poker player who can see the hand of all other play-
ers and his decisions can be analyzed to create a relatively
good normal player. The problem here and in all meth-
ods based on imitation is the limitation to cases where an
appropriate example model is available.

Evolutionary algorithms have been applied in several
ways to evolve ANNs. Yao [25] describes a general
method for simultaneously evolving the weights of an
ANN. Meeden [26] proposes a solution solely based on
mutation and selection without crossovers. Floreano and
Mondada [27] describe the evolving of a navigation sys-
tem based on discrete-time recurrent networks. They suc-
cessfully evolve a network for controlling a single Khep-
era robot. The work of Baldassarre et al. [28] shows
evolving physically connected robots using ANN con-
trollers. Sipper [29] shows the versatility of the approach
by applying it to different game playing problems.

Nelson [30] describes the evolution of multiple robot
controllers towards a team that plays “Capture the flag”
against an opponent team of robots. This work applies the
relative fitness concept as it is proposed in our approach.
In contrast, Coelho et al. [31] evolve soccer teams evalu-
ating against a control team. In particular they evolve sep-
arate ANNs for the different player behaviors (defense,
middle and attack). In our approach, we evolve teams,
where the same replicated ANN controls all the players.
Based on inputs about situation and the behavior of the
other teammates, a self-organizing process leads to a dif-
ferentiation into the particular behavior types during run-
time.

7 Conclusion and Future Work

We have described a method for evolving neural network
controllers for a team of cooperative robots. Given an
overall goal function, we evolve the particular weights
and biases of the neural network controllers using an evo-
lutionary algorithm. Thus, the neural network learns to
interpret the sensory inputs, to control the robots actua-
tors and to behave according to a strategy that is benefi-

8

cial for the given task. The approach is very flexible and
can be applied to a wide variety of problems but it de-
pends on a sufficiently accurate simulation and a fitness
function that provides the necessary gradients for the evo-
lutionary algorithm.

In a case study, we have evolved a control behavior
for simulated soccer robots to cooperatively win soccer
games. After a few hundred generations, the players of a
team adopt a useful behavior. In contrast to related work,
the players were not evolved to a priori defined roles, like
defender, midfielder or striker, but all have an instance of
the same neural network controller. Still, during a game,
different behavior of the players emerge based on their
situations. Thus, similar to biological systems, the en-
tities specify to different roles in a self-organizing way.
Since the entities are identical, the system has a high ro-
bustness against failure of some of the entities.

We have examined the influence of various factors
to the results. The most important factor was the de-
sign of the interface between neural network and sen-
sors/actuators. Although an ANN could theoretically
adopt to different representations of sensor/actuator in-
terfaces, it was necessary to find an interface with low
“cognitive complexity” for the ANN, which was in our
case a simple cartesian representation of the sensors and
intended robot movements. Furthermore, we analyzed
the influence of using different sizes and types of ANNs.
While the number of neurons had the smallest effect on
the performance, the type of representation favored the
fully connected network type.

In the future, we plan to assess the robustness and fault-
tolerance of the generated solutions. Furthermore, our
system is open to changes in the representation (e.g., us-
ing different controller types), the optimization method,
and the problem definition (e.g., apply the approach to
different problem domains).

Acknowledgment
This work was supported by the European Regional Devel-
opment Fund and the Carinthian Economic Promotion Fund
(contract KWF 20214|18128|26673) within the Lakeside Labs
project DEMESOS. We would like to thank Herwig Guggi and
Kornelia Lienbacher for the constructive comments on an ear-
lier version of this paper.

References
[1] Y. Uny Cao, A. S. Fukunaga, and A. B. Khang. Coop-

erative mobile robots: Antecedents and directions. Au-
tonomous Robots, 4:1–23, 1997.

[2] S. Johnson. Emergence: The Connected Lives of Ants,
Brains, Cities, and Software. Scribner, 2002.

[3] D. Floreano and S. Nolfi. The role of self-organization for
the synthesis and the understanding of behavioral systems,
chapter 1, pages 1–18. MIT Press: Cambridge, 2000.

[4] G. Novak. Roboter soccer: An example for autonomous
mobile cooperating robots. In Proceedings of the First
Workshop on Intelligent Solutions for Embedded Systems
(WISES’03), pages 107–118, Vienna, Austria, 2003.

[5] S. Bergbreiter and K. S. J. Pister. Design of an au-
tonomous jumping microrobot. In IEEE International
Conference on Robotics and Automation, Rome, Italy,
2007.

[6] J. Roberts, T. Stirling, J. Zufferey, and D. Floreano.
Quadrotor using minimal sensing for autonomous indoor
flight. In European Micro Air Vehicle Conference and
Flight Competition (EMAV’07), 2007.

[7] W. Elmenreich and H. de Meer. Self-organizing net-
worked systems for technical applications: A discussion
on open issues. In J.P.G. Sterbenz. K.A. Hummel, editor,
Proceedings of the Third International Workshop on Self-
Organizing Systems, pages 1–9. Springer Verlag, 2008.

[8] M. Resnick. Turtles, Termites, and Traffic Jams: Ex-
plorations in Massively Parallel Microworlds (Complex
Adaptive Systems). The MIT Press, January 1997.

[9] I. Harvey, E. Di Paolo, M. Quinn, and E. Tuci. Evolution-
ary robotics: A new scientific tool for studying cognition.
Artificial Life, 11:79–98, 2005.

[10] W. R. Ashby. Principles of the self-organizing dynamic
system. Journal of General Psychology, 37(3):125 – 128,
1947.

[11] S. Camazine, J.-L.Deneubourg, N. R. Franks, J. Sneyd,
G. Theraulaz, and E. Bonabeau. Self-Organization in Bi-
ological Systems. Princeton University Press, 2001.

[12] E. Bonabeau. Editor’s introduction: Stigmergy. Special
Issue of Artificial Life on Stigmergy, 5(2):95–96, 1999.

[13] J. R. Koza, editor. Genetic Programming: On the Pro-
gramming of Computers by Means of Natural Selection.
The MIT Press, 1st edition, December 1992.

[14] T. Just and D. B. Burg, editors. U.S. Chess Federation’s
official rules of chess. New York: Random House Puzzles
& Games, 5th edition, 2003.

[15] J. Kummeneje. RoboCup as a Measure to Research, Ed-
ucation, and Dissemination. PhD thesis, Stockholm Uni-
versity and the Royal Institute of Technology, Kista, Swe-
den, 2003.

[16] S. Buck and M. A. Riedmiller. Learning situation depen-
dent success rates of actions in a robocup scenario. In
PRICAI, page 809, 2000.

[17] I. Fehérvári and W. Elmenreich. Evolutionary methods
in self-organizing system design. In Proceedings of the
2009 International Conference on Genetic and Evolution-
ary Methods, 2009.

[18] W. Elmenreich and G. Klingler. Genetic evolution of
a neural network for the autonomous control of a four-
wheeled robot. In Sixth Mexican International Con-
ference on Artificial Intelligence (MICAI’07), Aguas-
calientes, Mexico, November 2007.

[19] FIDE swiss rules. Approved by the General Assembly of
1987. Amended by the 1988 & 1989 General Assemblies.

9

[20] Wikipedia. Buchholz system — Wikipedia, the free ency-
clopedia. [Accessed 22-Mar-2009].

[21] C. Gershenson. Design and Control of Self-organizing
Systems. PhD thesis, Vrije Universiteit Brussel, Brussel,
Belgium, 2007.

[22] A. Tyrrell, G. Auer, and C. Bettstetter. Biologically in-
spired synchronization for wireless networks. Advances
in Biologically Inspired Information Systems: Models,
Methods, and Tools, 69:47–62, 2007.

[23] M. Dorigo and T. Stützle. Ant Colony Optimization. Brad-
ford Books, 2004.

[24] C. Auer, P. Wüchner, and H. Meer. A method to derive
local interaction strategies for improving cooperation in
self-organizing systems. In IWSOS ’08: Proceedings of
the 3rd International Workshop on Self-Organizing Sys-
tems, pages 170–181, Berlin, Heidelberg, 2008. Springer-
Verlag.

[25] X. Yao and Y. Liu. Evolving artificial neural networks
through evolutionary programming. In Proc. of the Fifth
Annual Conference on Evolutionary Programming, pages
257–266. MIT Press, 1996.

[26] L. A. Meeden. An incremental approach to developing
intelligent neural network controllers for robots. IEEE

Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics, 26(3):474–485, June 1996.

[27] D. Floreano and F. Mondada. Evolving of homing nav-
igation in a real robot. IEEE Transactions on Systems,
Man, and Cybernetics, Part B: Cybernetics, 26(3):396–
407, June 1996.

[28] G. Baldassarre, D. Parisi, and S. Nolfi. Distributed co-
ordination of simulated robots based on self-organization.
Artif. Life, 12(3):289–311, 2006.

[29] M. Sipper, Y. Azaria, A. Hauptman, and Y. Shichel. De-
signing an evolutionary strategizing machine for game
playing and beyond. IEEE Transactions on Systems,
Man and Cybernetics, Part C: Applications and Reviews,
37(4):583–593, 2007.

[30] A. L. Nelson, E. Grant, and T. C. Henderson. Evolution
of neural controllers for competitive game playing with
teams of mobile robots. Robotics and Autonomous Sys-
tems, 46(3):135 – 150, 2004.

[31] A. L. V. Coelho and D. Weingaertner. Evolving coordina-
tion strategies in simulated robot soccer. In Proceedings
of the International Conference on Autonomous Agents,
pages 147–148. ACM, 2001.

10

