
A Survey of Models and Design Methods for Self-Organizing

Networked Systems

Wilfried Elmenreich1, Raissa D’Souza2, Christian Bettstetter1,
and Hermann de Meer3

1University of Klagenfurt and Lakeside Labs, Austria
firstname.lastname@uni-klu.ac.at

2University of California at Davis and Santa Fe Institute, USA
raissa@cse.ucdavis.edu

3University of Passau, Germany
demeer@uni-passau.de

Abstract

Self-organization, whereby through purely local interactions, global order and structure
emerge, is studied broadly across many fields of science, economics, and engineering. We
review several existing methods and modeling techniques used to understand self-organization
in a general manner. We then present implementation concepts and case studies for applying
these principles for the design and deployment of robust self-organizing networked systems.

1 Introduction

The term self-organization was introduced by Ashby in the 1940s [1]. He referred to pattern
formation occurring by the cooperative behavior of individual entities. Such formation can be
described by entities achieving their structure without any external influence. The ideas behind self-
organization were subsequently further studied and developed by a number of cyberneticians (e.g.,
von Foerster, Pask, Beer, and Wiener), chemists (e.g., Prigogine), and physicists (e.g., Haken). In
the 1980s and 90s, the field was further fertilized by some applied mathematics disciplines, such
as non-linear dynamics, chaos theory, and complex networks. Although there is still no commonly
accepted exact definition of a self-organizing system that holds across several scientific disciplines,
we refer to it as a set of entities that achieves a global system behavior via local interactions
between its entities without centralized control [2].

Phenomena of self-organization can be found in many disciplines. A well-known example from
nature is the flocking behavior in a school of fish. It is likely that there is no “leader fish,” but
each individual fish has knowledge only about its neighbors [3]. Despite (or probably because of)
this localized and decentralized operation, the difficult task of forming and maintaining a scalable
and highly adaptive shoal can be achieved.

With the increasing complexity in technology and its applications (more and more entities are
interconnected to form a networked system), the notion of self-organization has also become an
interesting paradigm for solving technical problems (see, e.g., references in [4]). In order to design
a self-organizing technical system, a set of modeling approaches and design methods are needed.
The goal of this paper is to give a survey of building blocks that can be used for modeling and
design of self-organization, with a special focus on information and communications and traffic
systems.

Textfeld
© Springer, 2009. This is the author's version of the work. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purpose or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the copyright holder. The definite version is published within the Proceedings of the 4th International Workshop on Self-Organizing Systems, www.springerlink.com, 2009. 



The paper is structured as follows: In Section 2, we take a closer look at specific modeling issues
for self-organizing systems. Section 3 presents an overview on different established models for self-
organizing systems. Section 4 reviews different methods for designing a self-organizing system
with an intended technical effect. Section 5 give references to some case studies with respect to
the concepts described in Sections 3 and 4. Finally, Section 6 concludes the paper.

2 Two Perspectives on Self-Organizing Systems

A self-organizing system (SOS) consists of a set of entities that interact with each other locally to
obtain a global system behavior. The global system behavior arises out of many simple interactions.
It is an emergent property, i.e., it cannot be explained by summation of the local interactions. A
self-organizing system can thus be viewed from two perspectives: the microscopic perspective
describes the entities and their behavior; the macroscopic perspective describes the (emergent)
behavior of the overall system.

An example for these two perspectives and their interrelation can be found in the “predator-
prey system” as described by Lotka and Volterra [5]. This biologically-inspired model contains
two types of animals, typically named “rabbits” (the prey) and “foxes” (the predators). It obeys
simple microscopic rules:

• Rabbits reproduce at a given birth rate ε1.

• Rabbits die if caught by foxes, with rate for such a death event given by γ1.

• Foxes reproduce at a rate γ2 proportional to the number of caught rabbits.

• Foxes die according to a given death rate ε2.

These rules can be described in an aggregated form by the differential equations

dN1

dt
= N1(ε1 − γ1N2),

dN2

dt
= −N2(ε2 − γ2N1) ,

where N1 and N2 is the number of rabbits or foxes, respectively. The rate of interaction between
both populations is a function of the product N1N2.

Figure 1: Simulation with 4 different initial conditions of Lotka-Volterra system with parameters
ε1 = 1, γ1 = 0.1, ε2 = 1, γ2 = 0.05

When examining the behavior of this system over time, we observe emergent phenomena on the
macroscopic level, such as periodic oscillations of N1 and N2. Unlike many oscillations in nature
which can be described by trigonometric functions, the solution of the Lotka-Volterra equations
do not have a simple expression in terms of trigonometric functions (see Fig. 1).



To describe the overall system behavior from the macroscopic perspective, Lotka and Volterra
found three laws:

1. The population sizes of rabbits and foxes oscillate with a particular phase offset. Period
lengths depend on the initial population and model parameters.

2. The averages of the two population sizes converge to a value that is determined by the model
parameters and is independent of initial conditions.

3. If both populations are decimated proportionally to their size, the rabbit population will
recover fast and will exceed their previous population.

These laws describe properties of the overall system, which cannot be immediately seen from the
four microscopic rules.

The Lotka-Volterra model enables us to derive both perspectives from the differential equations.
For more complex (more realistic) systems, however, the direct transformation between microscopic
and macroscopic perspectives might not be possible. In this case, the macroscopic model could
be built by (statistical) analysis of the overall behavior. This requires appropriate statistical tools
to analyze emergent structures and behavior [6]. Such a model, although being potentially very
useful in some cases, is unlikely to cover all possible aspects of the system behavior. An example
is the global economy — although tremendous research efforts are put into understanding both its
microscopic and macroscopic rules, the system is far from being exactly predictable.

To gain a deep understanding of a self-organizing system or to design a new system, it is
beneficial to consider both the microscopic and macroscopic perspective. A microscopic perspective
confers the advantage of providing an exact model, which directly supports implementation of the
entities. However, it provides no mechanism for measuring or understanding emergent properties.
A macroscopic perspective, in contrast, covers emergent behavior and a goal-oriented view. It is
less exact, as it treats the system as a “black box.” This obscures underlying dynamics and makes
it difficult to verify the applicability of the model to a given system.

3 Models for Self-Organizing Systems

Before building and deploying an engineered SOS, it can be beneficial to develop a model of the
system which can be analyzed mathematically or explored through computer simulation. This is
especially important given that SOS typically display emergent behaviors which, by definition, can
not be anticipated in advance. Models provide a virtual laboratory for exploring system design
and function and give insights into the types of emergent behaviors that might be expected and
the anticipated workings of real systems.

3.1 Differential Equations

Perhaps the first examples of modeling SOS reported in the literature are reaction-diffusion equa-
tions which generate patterns similar to those observed in Rayleigh-Bénard convection, viscous
fingering, spiral waves in chemical reactions and a range of additional structures such as stripes
and tilings [7, 8]. Many of these patterns are also observed in biological systems, with differential
equations providing models of organism growth and differentiation [7, 9]. Ref [8] provides a com-
prehensive review of pattern formation as modeled by reaction-diffusion equations. Most recently,
systems of differential equations have been used to model the emergence of synchronization in
systems of coupled oscillators ranging from fireflies, to neurons, to Josephson junctions [8, 10, 11].
The Lotka-Volterra model discussed above is another prominent example of this approach.

Despite the broad range of applicability, this approach is thus far limited to describing pattern
formation, oscillations and other simple collective phenomena. It does not allow much flexibility
for diversity of components and assumes a uniform spatial interaction, neglecting more realistic
types of connectivity in real-world systems which are often much better described by networks
than uniform spatial fields.



3.2 Cellular Automata

Cellular automata models (CAs) are a simulation method for studying SOS which assume the
world is a discrete grid (a lattice) and each site on the grid can be found in one of a set of possible
discrete states. CAs have been successfully used to model a range of real physical systems from
predator-prey systems, to chemical spiral waves, to hydrodynamics [12, 13, 14, 15].

A highly desirable aspect of CAs, absent from differential equations, is that they allow for local-
ity. In other words, sites on the grid interact directly only with neighboring sites, thus, consistent
with physical law, there is no “action at a distance” and all signals must propagate along a path
of connected neighbors. (Yet, similar to differential equations, this requirement of uniform spatial
connectivity does not permit irregular networked patterns of interaction.) Another highly desirable
quality of CAs is that they readily exhibit interesting behaviors such as forming a range of patterns
similar to those observed with differential equations and also far more complex dynamics such as
moving patterns (“gliders”) in Conway’s Game of Life [16]. Many CAs are computationally uni-
versal, i. e., in theory CAs can be used to implement any computation. A fundamental requirement
necessary for many (if not most) CAs to exhibit interesting behaviors is synchronous updating (all
grid sites update simultaneously). Though not always realistic, as discussed in Sec. 5.1, there are
simple algorithms which do allow collections of objects to synchronize, so it may be possible to
engineer a system to fit the CA paradigm.

3.3 Agent-based Models

Agent-based models are another modeling approach and a natural starting point if components in
a system can vary dramatically from one another and display a range of behaviors and strategies
(especially decision making). In contrast, CAs assume every site in the grid obeys the same
rules. Furthermore, agent based models do not need to assume an underlying topology, specifying
or restricting which components can interact; agents can come together and interact with one
another in complex and dynamic ways. Such approaches are clearly necessary if, as in economics,
we wish to model interactions amongst humans with complex decision making abilities. Agent
based approaches can also be quite useful even if the agents are simple, such as capturing swarm
behaviors [3].

Agent based approaches are extremely flexible, modeling the interactions of a collection of
autonomous agents. Thus, unlike CAs and differential equations, they can model phenomena in
social systems and agent based approaches lend themselves readily to incorporating game theoretic
policies [17]. Many software platforms and techniques exist for building agent based models and
Refs. [18] and [19] provide useful reviews.

A major drawback to agent based modeling is the lack of rigor. Due to the complexity of
the model specifications (behaviors of agents, patterns of interaction) it is difficult to assess the
robustness of observed phenomena to changes in the specifications and the accuracy by which the
model describes real systems.

4 Design Methods for Self-Organizing Systems

The design of self-organizing systems differs from typical engineering approaches in the way that the
system is rather built bottom-up than top down. At an early stage of development, it is necessary
to tinker with the interactions between the individual system entities. In contrast, traditional
systems are typically built starting with the overall system service and then approach the micro
level only after several more and more fine-grained system models. Therefore, most standard design
approaches do not fit well for the design of self-organizing systems. In the following, we discuss
several design approaches that have been used or could be used for this purpose.



4.1 Analytical Approach

If the chosen model is abstract and simple enough, the settings for the desired global properties
could be derived by an analytical solution. For example, if a system S fed with a configuration C
gives the emergent behavior B, the task is to find the inverted function, i.e.,

S(C) = B ⇒ C = S−1(B)

Unfortunately, even for moderately complex systems this is usually not feasible or would require
a high effort for solving a mathematical problem which might already be represented by an less
realistic abstraction from the actual problem. E. g., for the Lotka-Volterra example there exists is
no complete analytical solution for the differential equation system, i.e., the equations have to be
reduced or solved numerically.

An analytical approach may, however, help to discover certain aspects of the system. This
might be achieved e.g. by assuming certain conditions or parameters. Thus it can help in the
initial system design phase to predict certain aspects and in the final phase by verifying system
aspects.

4.2 Applying a Reference Design

There exist many examples of self-organization in different domains, such as biology, physics,
mathematics, economics. In order to find a working approach for achieving a particular behavior,
a reference design from one of these disciplines can provide a major step towards a successful
solution. There are two main paradigms for adopting a reference design: top-down and bottom-
up.

In the top-down approach, a technical problem is tackled by looking for examples solving an
equivalent problem. The found solution and its principles are then analyzed and re-built in a
technical application. Examples of top-down approaches are (a) the design of aeroplane wings by
observing the gliding flight of birds and (b) the design of turbulence-reducing winglets by analyzing
the wingtips of birds [20].

In the bottom-up (or indirect) approach, the working principle of the system is first abstracted
from its natural context. This step is done in a basic research effort that is not yet targeted at the
specific application. Afterward, the results are used in particular technical applications. Thus, the
indirect approach could also be called a “literature-inspired approach”. Examples include (a) the
concept of artificial neural networks and (b) the concept of ant foraging behavior being applied to
mesh network packet routing [21].

4.3 Trial and Error

Another approach is to explore the effect of different interaction rules at the microscopic level on
the global system behavior using a trial-and-error method.

The simplest trial-and-error method would be a Monte-Carlo method, where random configu-
rations are created and tested until the global system shows the intended behavior. Due to the
typically high-dimensional search space, however, randomized trial-and-error approaches are very
unlikely to succeed within an acceptable time frame.

Alternatively, the trials can be used to learn about the causality of particular configurations
and the global system behavior. Thus, after a reasonable number of test configurations, the tester
might be able to apply his/her understanding of the emergent processes to find a local rule set
with a desirable configuration.

An auxiliary concept to understand the causality between local interactions and global system
behavior is introduced by Gershenson [22] as the the notion of friction. Friction is a property of
interaction between two entities as well as a property of the overall system. This latter friction is
to be minimized. By identifying and analyzing points of friction, an engineer can change the local
rules towards better system performance. However, this is not straightforward: in several cases a
higher friction for a particular entity is beneficial for the overall system.



Additionally, emergent behavior is often counterintuitive to what is expected by most people.
Resnick [23] describes a simple simulation of a self-organizing slime mold. Several experts were
asked to predict the influence of a specific parameter change on the system. The answer was binary,
i. e., there was a 50% random change of guessing the correct answer. Nevertheless, a significant
majority of people, including experts on complex and self-organizing systems, guessed the wrong
answer.

4.4 Evolutionary Algorithms

Conventional search algorithms can be applied to search for an optimal or sufficiently good set of
local rules. However, the search space is typically too large for an exhaustive search. For these
cases, evolutionary algorithms and heuristic search algorithms can be a choice. Examples include
genetic algorithms, simulated annealing, swarm-based optimization, and the Sintflut algorithm.

Using evolutionary algorithms requires a “testbed” that allows extensive and safe testing at
low cost. Usually, such a testbed consists of a simulation of the target system with a model of the
environment and the system itself. However, a simulation always implements an abstraction of the
real environment, so after the experiments, a real-world validation is required to create trust in
the derived solution.

The most prominent example for evolutionary algorithms are genetic algorithms. A genetic
algorithm starts with an initial population of candidate solutions for a multidimensional opti-
mization problem. It wishes to quickly find a near-optimal solution. At each generation, the
candidates are randomly mutated or combined. The candidates with the best “fitness” establish
the population of the next generation. An example where a genetic algorithm is used to design
a self-organizing technical system is given in [24]. It was used to find the interaction behavior
for a distributed robot soccer team. The behavior was modeled as an artificial neural network to
support an implementation of mutation and combination.

4.5 Markov Models and Finite State Machines

Auer, Wüchner and De Meer propose a method to derive local interaction rules by learning from
a reference solution [6]. The reference solution can be any algorithm that performs well for the
problem. For example, the reference solution might be built as an omniscient system in a simula-
tion. In many cases, it might not be possible to use this solution for a real application because the
perfect information cannot be provided to the algorithm or the algorithm might be too complex to
be implemented with reasonable response times. However, the omniscient algorithm can be used
as an example for teaching its behavior to distributed entities that use only local information and
interactions.

The behavior of the reference agent is analyzed using Markovian analysis and then rebuilt in
a Finite State Machine (FSM). Thus, the state machine mimics the statistical behavior of the
reference agent. The approach relies thus on the possibility that a suitable reference solution is
available and that the behavior can be successfully used by an agent with local perception.

In [6], the application of this method is shown by designing an agent for the game theoretic
problem “repeated prisoner’s dilemma” [25]. In the design process, an agent having perfect knowl-
edge (including the opponent’s decision) is created. Then the behavior of this “perfect” agent is
analyzed using Causal State Splitting Reconstruction [26], i. e., a method for building recursive
hidden Markov models from discrete-valued time series.

The results are then implemented as FSM controling the behavior of a normal (non-omniscient)
agent. The resulting behavior was similar to the well-known tit-for-tat strategy including forgive-
ness. Tit-for-tat with forgiveness is known to be a highly effective strategy in the repeated prisoner’s
dilemma.



Figure 2: Combined design approach

4.6 Combining the Approaches

The presented design approaches can also be combined. For example, the reference design method
may serve as a starting point, where the system designer applies one of the other methods sub-
sequently after choosing a reference model. Another variant of a design process could involve a
“bootstrapping” method, where efforts to understand the effect of local interactions are combined
with an analysis of the global emergent behavior. Some effects of local rules could be predicted by
mathematical analysis of the interaction. For example, in physics, only the gravitational system of
two bodies is analytically solved. Still, the results can be applied to understand the movement of
more bodies in our solar system, as long as some influences can be neglected. Statistical approaches
such as Markov models or evolutionary algorithms can be a further step in the system design. In
the combined approach as depicted in Figure 2, insights from the microscopic level are influencing
and improving the design at the macroscopic level and vice versa.

5 Case Studies from Engineering

A nice feature of modeling approaches in self-organization is their simplicity at the microscopic
level. Simple local rules lead to global structure and function. From an engineering perspective, we
would like to apply these models to technical systems. This chapter will give some examples where
models from self-organization and complex systems have been successfully applied to information
and communications technology research. It will also show that a direct applicability of the theory
of self-organization and complex systems is often not possible, but the design of self-organizing
functions in technology often requires us to modify and extend the original schemes, taking into
account some technological constraints and requirements.



5.1 Wireless Communications: Application of Coupled Oscillators

The pulse-coupled oscillator (PCO) model for firefly synchronization [10] has been employed in
many fields of science and engineering. Prominent examples include self-organizing algorithms for
time synchronization in wireless systems [27], resource scheduling [28], reducing energy consump-
tion in sensor networks [29], and traffic light control systems [30].

The application of firefly synchronization to mobile and wireless systems requires us to perform
some modifications and extensions to the original scheme. These changes are required, since the
assumptions in [10] do not match with the system constraints of radio communications. In other
words, the modeling assumptions in the original scheme are too simplistic compared to the modeling
assumptions typically used in wireless and mobile systems.

First, in general, we cannot neglect inherent delays of the system, including propagation delays,
decoding delays, and delays caused by signal processing. These delays make the synchronization
scheme unstable, as nodes might receive “echos” of their own firing pulse. To regain stability,
a refractory period can be introduced during which nodes do not increase their phase function
[31, 27]. Second, wireless communication technologies do typically not allow us to send infinitely
short pulses over the air. This fact forces us to replace the infinitely short “firing pulses” by finitely
long “synchronization signals” (see e.g. [32, 33]). Third, the wireless medium suffers from noise
and attenuation, which must be taken into account for the design of a synchronization scheme
as well [34]. Last but not least, to minimize the use of radio resources, it would be beneficial to
minimize the signaling overhead, such that nodes only send synchronization words when needed
and not periodically as in the original scheme [35].

An approach for self-organized synchronization in wireless systems has been recently developed
by Tyrrell, Auer, and Bettstetter [35]. The scheme, called Meshed Emergent Firefly Synchroniza-
tion (MEMFIS), applies a synchronization word that is common to all nodes in the network and
is embedded into each payload data packet. This word is then detected at the receiver using
a correlation unit. Starting from an unsynchronized network, synchronization emerges as nodes
transmit data packets randomly according to some arrival process. In this way, the throughput of
the network can increase gradually, e.g., from ALOHA to Slotted ALOHA.

Another example, where firefly synchronization has been applied to information and security
technology is intrusion detection using sensor networks. One approach has been developed in [36].

5.2 Vehicular Traffic: Application of Cellular Automata and Agent-
based Approaches

An interesting application of cellular automata, studied extensively in both the physics and the
engineering communities, is the modeling and analysis of urban vehicular traffic [37, 38, 39, 40].
Gershenson and Rosenblueth [41] apply a two-dimensional model based on simple interaction roles.
A street is modeled by a line of connected cells. Each cell can have two states, being empty (0)
or occupied by a car (1). The interaction model defines that a car moves on to the next cell
in its direction of motion, if this cell is empty; otherwise the car waits. At an intersection, two
streets share a common cell. Depending on the state of the traffic lights, this cell operates as a
forwarding cell either to the right or downwards, while blocking the other direction, respectively.
In their work, Gershenson and Rosenblueth compare a traffic light control algorithm based on a
green-wave method and a self-organizing approach. While the green-wave method requires the cars
to match a predefined progression speed to show good throughput, the self-organizing approach
shows to be more flexible in adapting to different load situations.

Resnick [23] describes an agent-based traffic model that explains the formation of traffic jams
without a centralized cause (such as accidents). Each agent represents a car following a simple set
of rules: it slows down if it detects a car close ahead; it speeds up if it does not see a car ahead. In
this model, a traffic jam appears as a pattern moving in the opposite direction of the traffic flow.
In contrast to cellular automata, the agent-based approach enables a more fine-grained model of
the driver’s action and decision process. For example, the model could be extended by drivers that
have a bad reaction time due to distractions (e.g., phone calls).



6 Conclusions

Several problems in technology and society can be better understood and solved by modeling them
as a self-organizing system. An engineer with the task of developing such a self-organizing system
faces the problem of modeling and designing the local interactions which will achieve a desired
global system behavior. In this paper, we have reviewed several modeling and design approaches
suitable in this domain.

Differential equations can model a range of simple collective behaviors, such as pattern for-
mation and the synchronization of coupled oscillators. E. g., the latter are an extremely useful
paradigm for modeling self-organizing phenomena; they are often used to describe phenomena
related to oscillation and synchronization within a system. Cellular automata are time-discrete
and space-discrete models which are often used to display pattern formation phenomena or other
phenomena related to the location of the entities. Agent-based models can be applied to both
space-continuous and space-discrete phenomena. The are advantageous if entities display a range
of behaviors and strategies such as decision making.

The design of a self-organizing system is difficult due to its emergent properties. This paper
made an attempt to propose some design approaches, namely the analytic approach, working from
a reference design, trial and error, evolutionary algorithms, and a statistic approach based on
Markov models. Each of these has certain advantages and disadvantages, thus a combination of
them can be useful in the system design process.

Finally, the paper gave examples from communications and traffic engineering where some of
the presented models and design approaches have been successfully employed.

Acknowledgments

This paper was supported in part by the KWF (contract KWF 20214/18124/26663 and KWF
20214—18128—26673), the ResumeNet project (EU Framework Programme 7, ICT-2007-2, Grant
No. 224619), and the Forschungsrat at the University of Klagenfurt.

This work is an outcome of the Lakeside Research Days 2009 which took place at Lakeside Labs
GmbH, Klagenfurt, Austria, from July 13, 2009 to July 17, 2009. The authors would like to thank
all participants for the fruitful discussions.

References

[1] H. von Foerster. Principles of the self-organizing system. In H. von Foerster and Jr. G. W. Zopf,
editors, Principles of Self-organization, pages 255–278. Pergamon Press, 1962.

[2] W. Elmenreich and H. de Meer. Self-organizing networked systems for technical applications: A
discussion on open issues. In J.P.G. Sterbenz. K.A. Hummel, editor, Proc. Intern. Workshop on
Self-Organizing Systems, pages 1–9. Springer Verlag, 2008.

[3] C. W. Reynolds. Flocks, herds and schools: A distributed behavioral model. In Proc. Annual Conf.
on Computer Graphics and Interactive Techniques SIGGRAPH ‘87, pages 25–34, 1987.

[4] C. Prehofer and C. Bettstetter. Self-organization in communication networks: Principles and design
paradigms. IEEE Communications Magazine, pages 78–85, July 2005.

[5] V. Volterra. Leçons sur la théorie mathématique de la lutte pour la Vie. Gauthier-Villars, Paris, 1931.

[6] C. Auer, P. Wüchner, and H. de Meer. A method to derive local interaction strategies for improving
cooperation in self-organizing systems. In Proc. Intern. Workshop on Self-Organizing Systems, Vienna,
Austria, December 2008.

[7] A. M. Turing. The chemical basis of morphogenisis. Philos. Trans. R. Soc. London Ser. B, 237:37–72,
1952.

[8] M. C. Cross and P. C. Hohenberg. Pattern formation outside of equilibrium. Reviews of Modern
Physics, 65(3):851–1112, 1993.

[9] J. D. Murray. Mathematical Biology: I. An Introduction. Springer-Verlag, Berlin, 1989.



[10] R. E. Mirollo and S. H. Strogatz. Synchronization of pulse-coupled biological oscillators. SIAM
Journal on Applied Mathematics, 50(6):1645–1662, Dec. 1990.

[11] A. Pikovsky, M. Rosenblum, and J. Kurths. Synchronization: A Universal Concept in Nonlinear
Sciences. Cambridge University Press, Cambridge, England, 2003.

[12] T. Toffoli and N. Margolus. Cellular automata machines. The MIT Press, Cambridge, MA, 1986.

[13] S. Wolfram. Theory and applications of cellular automata. World Scientific, Singapore, 1986.

[14] B. Chopard and M. Droz. Cellular automata modeling of physical systems. Cambridge University
Press, Cambridge, England, 1998.

[15] L. B. Kier, P. G. Seybold, and C.-K. Cheng. Modeling Chemical Systems Using Cellular Automata.
Springer Netherlands, 2005.

[16] M. Gardner. Mathematical games: The fantastic combinations of John Conway’s new solitaire game
“life”. Scientific American, 223:120–123, October 1970.

[17] R. Axelrod. The Complexity of Cooperation: Agent-Based Models of Competition and Collaboration.
Princeton University Press, 1997.

[18] N. Gilbert and S. Bankes. Platforms and methods for agent-based modeling. Proc. Natl. Acad. Sci.
U.S.A., 99(3):7197–7198, 2002.

[19] S. F. Railsback, S. L. Lytinen, and S. K. Jackson. Agent-based simulation platforms: Review and
development recommendations. Simulation, 82(9):609–623, 2006.

[20] R. Faye, R. Laprete, and M. Winter. Blended winglets. Aero, Boeing, (17), January 2002.

[21] G. di Caro, F. Ducatelle, and L. M. Gambardella. Anthocnet: An adaptive nature-inspired algo-
rithm for routing in mobile ad hoc networks. Springer Lecture Notes in Computer Science, LNCS
3242:461470, 2004.

[22] C. Gershenson. Design and Control of Self-organizing Systems. PhD thesis, Vrije Universiteit Brussel,
2007.

[23] M. Resnick. Turtles, Termites, and Traffic Jams: Explorations in Massively Parallel Microworlds
(Complex Adaptive Systems). The MIT Press, 1997.

[24] I. Fehérvári and W. Elmenreich. Evolutionary methods in self-organizing system design. In Proc.
Intern. Conf. on Genetic and Evolutionary Methods, 2009.

[25] A. Tucker. A two-person dilemma. Stanford University Press, 1950.

[26] C. R. Shalizi and K. L. Shalizi. Blind construction of optimal nonlinear recursive predictors for
discrete sequences. In M. Chickering and J. Halpern, editors, Proc. Conf. on Uncertainty in Artificial
Intelligence, pages 504–511, 2004.

[27] R. Mathar and J. Mattfeldt. Pulse-coupled decentral synchronization. SIAM Journal on Applied
Mathematics, 56(4):1094–1106, Aug. 1996.

[28] A. Patel, J. Degesys, and R. Nagpal. Desynchronization: Self-organizing algorithms for periodic
resource scheduling. In Proc. Intern. Conf. on Self-Adaptive and Self-Organizing Systems, July 2007.

[29] R. Leidenfrost and W. Elmenreich. Firefly clock synchronization in an 802.15.4 wireless network.
EURASIP Journal on Embedded Systems, page 17 p., 2009.

[30] B. Bayraktaroglu. Traffic light control system and method. United States Patent 4908615, 1990.

[31] U. Ernst, K. Pawelzik, and T. Geisel. Synchronization induced by temporal delays in pulse-coupled
oscillators. Phys. Rev. Lett., 74(9):1570–1573, Feb. 1995.

[32] G. Werner-Allen, G. Tewari, A. Patel, M. Welsh, and R. Nagpal. Firefly-inspired sensor network
synchronicity with realistic radio effects. In Proc. ACM Conf. Embedded Networked Sensor Systems
(SenSys), San Diego, CA, USA, November 2005.

[33] A. Tyrrell, G. Auer, and C. Bettstetter. Fireflies as role models for synchronization in ad hoc networks.
In Proc. Intern. Conf. on Bio-Inspired Models of Network, Information, and Computing Systems
(BIONETICS), Cavalese, Italy, December 2006.

[34] Y.-W. Hong and A. Scaglione. A scalable synchronization protocol for large scale sensor networks
and its applications. IEEE J. Select. Areas Commun., 23(5):1085–1099, May 2005.



[35] A. Tyrrell, G. Auer, and C. Bettstetter. Emergent slot synchronization in wireless networks. IEEE
Transactions on Mobile Computing, 2010. Under review.

[36] Y.W. Hong and A. Scaglione. Distributed change detection in large scale sensor networks through
the synchronization of the pulse-coupled oscillators. In Proc. IEEE Intern. Conf. Acoustics, Speech,
and Signal Processing (ICASSP), Montreal, Canada, 2004.

[37] O. Biham, A. A. Middleton, and D. Levine. Self organization and a dynamical transition in traffic
flow models. Phys. Rev. A, 46:R6124, 1992.

[38] T. Nagatani. The physics of traffic jams. Rep. Prog. Phys., 65(9):1331–1386, 2002.

[39] D. Helbing and K. Nagel. The physics of traffic and regional development. Contemporary Physics,
45:405–426, 2004.

[40] O.K. Tonguz, W. Viriyasitavat, and F. Bai. Modeling urban traffic: A cellular automata approach.
IEEE Communications Magazine, May 2009.

[41] C. Gershenson and D. A. Rosenblueth. Modeling self-organizing traffic lights with elementary cellular
automata. C3 report 2009.06, Universidad Nacional Autónoma de México, 2009.




