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Abstract. The concept of self-organization has been examined oftentimes
for several domains such as physics, chemistry, mathematics, etc. How-
ever, the current technical development opens a new field of self-organizing
applications by creating systems of networked and massively distributed
hardware with self-organized control. Having this view in mind, this papers
reviews the questions: What is a self-organizing system?, What is it not?,
Should there be a separate field of science for self-organizing systems?, and
What are possible approaches to engineer a self-organizing control system?.

The presented ideas have been elaborated at the Lakeside Research
Days’08 (University of Klagenfurt, Austria), a workshop that featured
guided discussions between invited experts working in the field of self-
organizing systems.

1 Introduction

The idea of Self-Organizing Systems (SOSs), although long known from domains
such as physics, chemistry, and biology, has recently gained interest to be applied
to technical applications. The reason for this is a paradigm shift from monolithic
systems or systems with a small number of components to large networked sys-
tems. This paradigm shift is driven by the technological advancement and the
emergence of pervasive systems integrating information processing into everyday
objects and activities. For example, a fieldbus network with accurate but expen-
sive sensors interconnected by a dependable wired communication system might
be replaced by a system of hundreds of small, but inexpensive sensors using a
wireless ad-hoc network to interconnect. Such a cyber-physical system [1] can use
the view of multiple sensors to come to a massively distributed view of a technical
process, where the fusion of several sensor measurements potentially leads to a
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more extensive, more accurate, and more robust observation. However, such an
approach requires a control paradigm that copes with the complexity of such a
solution. A promising approach to attack this problem is the principle of self-
organization, where the control is as well decentralized as the controlled system.
Through the definition of the behavior in local interactions, it is expected that
the overall system shows emergent behavior such as complex order or properties
like robustness, adaptability and scalability.

Designing and controlling an SOS can be very demanding. There is no general
methodology yet explaining how to design an SOS and in many cases it is very
difficult to provide a concise validation of the system. In order to identify the
current problems and to search for possible directions for a solution, the Lakeside
Labs at the University of Klagenfurt, a research center focusing on networked self-
organizing systems, arranged a one-week event called Lakeside Research Days’08
by inviting international researchers working in the area of SOSs to discuss the
topic of SOSs and its open problems. It is the purpose of this paper to summarize
the main results of the workshop in order to give researchers an idea of the open
problems and the potential for future research.

The rest of the paper is organized as follows: Section 2 briefly reviews the
results of a discussion on the definition of SOSs followed by identifying several
misconceptions on the understanding of SOSs. Section 3 approaches the question
if SOSs should become a separate field of science having its own experts, terminol-
ogy, and nomenclature. The question how an SOS can be designed is addressed
in Section 4 by sketching three different types of design approaches. Section 5
concludes the paper.

2 Definition and Misconceptions of Self-Organizing
Systems

In order to communicate problems, methods and results, it is necessary to have a
common understanding of the terms used in scientific communication. The term
“self-organization” is used by many researchers, but it has no generally accepted
meaning. Instead, there exist a number of definitions from different domains such
as from cybernetics [2, 3], mathematics [4], information theory [5], etc. Gershenson
and Heylighen [6] argument to evade the debate about an exact definition of SOSs
and to regard self-organization merely as a way of observing systems. Depending
on the system type and its applications, understanding a system as being self-
organized can be more or less helpful.

Therefore, instead of trying to find a single concise definition of SOSs we
worked out a brief sentence explaining the main idea of SOSs that assists in
communicating the main idea. Followed by this, we elaborated on the com-
mon misconceptions in the definition of SOS. Among several proposals, the
following sentence, which was an outcome of the discussions at the Research
Days [7] showed an interesting attempt to sketch the concept of SOSs in a nutshell:

A self-organizing system (SOS) consists of a set of entities that obtains an
emerging global system behavior via local interactions without centralized control.



In the following, we address the question of common misconceptions in the
understanding of SOSs.

2.1 Misconception #1: Self-organizing systems establish a class of
systems

If a system is considered to be self-organizing or not depends mainly on the
way how the system is observed, especially where the borderline between the
observed system and its environment is drawn. Gershenson proposes the following
perspective to overcome this problem: Instead of thinking of SOSs as an absolute
class of systems, self-organization should be understood as a way of observing
systems [6]. Depending on the type of problem and the desired solution, the way
of observing a system as an SOS can be beneficial or not.

2.2 Misconception #2: Self-organizing systems are chaotic systems

There is a relation between chaos theory and self-organization in that a SOS
may show chaotic behavior, that is having critical turning points (also known as
bifurcations) in the system behavior [8]. However, an SOS does not necessarily
have to show such behavior. Instead, some SOSs also might approach their target
state without a sensitive dependence on initial conditions. Accordingly, a system
with chaotic behavior may be built without employing the typical building blocks
of SOSs such as distributed entities and local interactions.

2.3 Misconception #3: The emerging structure is a primary property
of self-organizing systems

SOSs provide a powerful mechanism to create structure and patterns. This phe-
nomenon can be observed in many physical and biological systems, such as the
skin pigmentation of fish, the polygonal pattern of nest territories of fish such as
Tilapia, or the cathedral-like buildings of termites [9].

However, the emerging pattern should not be seen as a primary property of
an SOS. There are SOSs, like homeostatic operational control in living beings,
where such a structure is not present or is hidden from the observer. Thus, the
emerging structure can be rather seen as a secondary property that indicate self-
organization in many cases.

2.4 Misconception #4: Self-organizing systems are always based on
evolutionary processes

Evolutionary processes, as best known from biological examples, are an iterative
mechanism of change in the inherited traits of a population of organisms from
one generation to the next [10]. Evolutionary processes are driven by mutation,
selection and recombination.



Many biological examples of self-organizing systems have emerged from an
evolutionary process, which made the term self-organization connected to evolu-
tion. Thus, the connection of SOSs to evolutionary processes is not an obligatory
one, since many non-biological examples of SOSs have developed without an evo-
lutionary process, thus showing the possibility to design self-organizing without
an evolutionary process. However, an interesting research task for future technical
systems arises in constructing SOSs, which implement an evolution of their local
rules in order to adjust to new situations.

2.5 Misconception #5: A self-organizing system never needs
maintenance

Many SOSs show adaptive behavior, which means that they can operate well
within a wide range of input parameters. However, that does not imply that a
technical SOS will have a low maintenance effort. Typically, a complex technical
system that must operate over a considerable life time will require maintenance
in order to provide its service during system lifetime. It is an open question if
maintenance of a technical system with self-organizing properties will be easier or
more complicated to maintain than a traditionally designed technical application.
On the one hand, properties like robustness might make it easier to replace parts of
the system without disturbing the overall operation, on the other hand, diagnosis
and maintenance of an SOS might turn out to be more complex than in systems
built following a more straightforward approach.

3 Self-Organizing Systems Forming an Own Field of
Science?

A science field is characterized as a category of specialized expertise within science,
often also having its own terminology and nomenclature. In the example of SOSs
we cannot speak of a separate field of science today.

As sketched in Figure 1, SOSs are found in multiple disciplines, being thus a
highly interdisciplinary field. This does not necessarily hinder the formation of an
own field of science, as it is shown by the also highly interdisciplinary research
on Artificial Intelligence, which is regarded as a separate field of science. A key
question is, if the research on SOSs is likely to converge in a separate field of
science with its own experts, terminology, and nomenclature. The other option is
that research on SOSs will rather be covered by researches coming from one of
the related fields.

The answer of the question is of great interest, since it will influence future
decisions on installing academic curricula for the “field” of SOSs. We do not
claim that we can give an absolute answer to this question, but we can formulate
two subquestions to this issue:

Is there a common vision within the field?



Fig. 1. Interdisciplinary role of self-organizing systems

For example, Artificial Intelligence (AI), also consisting of many different
methods and viewpoints, came at least with a common vision as it was presented
in the proposal for the Dartmouth Summer Research Project by McCarthy,
Minsky, Rochester and Shannon in 1955 [11].

Are there fundamental research questions that would require investigation
from dedicated SOSs researchers?

If not, trying to force the creation of a new field with its own terminology
and nomenclature would be an effort that can even worsen the communication
between other domains since the problem is not discussed in the domain-specific
language.

4 Design Approaches for Self-Organizing Systems

In [12], Prehofer and Bettstetter identify the task of finding local behavior rules
that achieve global properties as a major paradigm to be approached. In the fol-
lowing, we will elaborate on design approaches for solving this problem.

4.1 Bio-Inspired Design

In nature, there are several examples of self-organizing behavior, for example, ants
cooperatively finding shortest routes to food sources, termites building complex
constructions without using a blueprint, fish schools organizing themselves with-
out a leader, and swarms of fireflies in south-east Asia synchronously emitting
light flashes.



There are two main paradigms of bio-inspired design: the direct and the in-
direct approach. In the direct (or top-down) approach, a technical problem is
tackled by looking for natural examples solving an equivalent problem. The bi-
ological solution and its principles are then analyzed and re-built in a technical
application. Examples of the direct approach are the design of aeroplane wings
by observing the gliding flight of birds as it was done by Otto Lilienthal in the
19th century, or, after a closer analysis of the up-bent feathers at the wingtips of
several birds, the refinement of aeroplane wings by turbulence-reducing and thus
fuel-saving winglets [13].

In contrast, the indirect (or bottom-up) approach of bio-inspired design in-
volves first the derivation of principles by analyzing natural systems. This step is
done in a basic research effort that is not yet targeted at a specific application.
The principle is then abstracted from its biological context and used in particular
technical applications where they could be suitable. Examples of the indirect ap-
proach are the concept of artificial neural networks or the concept of ant foraging
behavior being applied to mesh network packet routing.

An important aspect of bio-inspired design are the notable differences between
biological and technical solutions: In many biological systems, especially for lower
animals, there is no real counterpart to what we call software in technical systems.
For example, protozoa have no mechanism to learn and circulate behavior during
lifetime. Instead, new behavior is stored via the genes of the next generation. With
the same effort, also physical changes of the next generation are possible. Thus,
in such an evolutionary approach, the physical body and the physical abilities
typically grow as part of the solution, while in traditional engineering the analogy
of the body, that is the hardware, has to be usually fixed early in the design
process. For example, a hardware revision comes with considerable little effort in
biological systems while in a technical project an unscheduled hardware change
likely might cause the project to go over budget. On the other hand, when using
the biological approach only with the software part being able to change, the result
might be less effective than the biological example. For example, a bio-inspired
algorithm optimizing only the software for a mobile robot would not play with
optimizing the number and placement of the robot’s physical sensors while the
biological counterparts co-optimize these aspects as well.

On the other hand, evolution is at a disadvantage when it comes to the creation
of radically new designs. All living beings follow more or less a general blueprint,
in case of a particular class such as mammals, the design is even more restricted.
Thus, for example, nature was never able to design a wheeled vehicle-like animal
or other rotating machines.

Thus, bio-inspired mechanisms might be inappropriate when (i) the biological
solution is too difficult to rebuild with technical means or (ii) a technical solution
can be more efficient by taking advantage of mechanisms that cannot be found in
the biological paradigm. A mistake to be avoided is to stick to biological solutions
just because of their seeming elegance.

These differences between nature’s way to build things and engineering make
especially a direct design approach very difficult to apply. For designing self-



organizing technical systems, the indirect approach seems more promising, since
it allows the assignment of biological ideas in a wider context.

4.2 Trial and Error

This approach requires to have a testbed that allows extensive testing without
high cost or possible endangering of persons. Usually, such a testbed consists
of a simulation of the target system with a model of the environment and the
system itself. However, a simulation always implements an abstraction of the real
environment, so after the experiments, a real-world validation is required in order
to create trust in the derived solution.

The process of trial and error itself can be refined in several ways.
Gershenson [14] introduces the notion of friction to describe the fitness of an

interaction between two entities. There exists also a friction of the overall system
that should be minimized in order to maximize its performance. By identifying
and analyzing points of friction, an engineer can change the local rules in order to
mitigate the problem. However, this is not a straightforward approach – in several
cases a higher friction for a particular entity might be beneficial for the overall
system.

Furthermore, existing search algorithms can be applied to the search for an
optimal or sufficiently good set of local rules. However, the search space is typically
too large for an exhaustive search and its non-monotonic properties can get a non-
exhaustive search algorithm to be stuck in local maxima. In this cases, heuristic
search algorithms like genetic algorithms and simulated annealing can be a choice.

4.3 Learning from an Omniscient Solution

This approach requires to have an optimal or at least well-performing solution to
the problem beforehand. However this solution might be created using features
that cannot be realized in the final solution. An example could be the implemen-
tation of an omniscient algorithm for a simulation. In many cases, it might not be
possible to use this solution for a real application because the perfect information
cannot be provided to the algorithm or the algorithm might be too complex to be
implemented with reasonable response times. However, the omniscient algorithm
can be used as an example for teaching its behavior to distributed entities that
use only local information and interactions.

An example for such an approach is given by Auer, Wüchner and De Meer [15]
by designing an agent performing well in the prisoner’s dilemma [16]. In the de-
sign process, an agent having perfect knowledge is created first, then its behavior
is analyzed using Causal State Splitting Reconstruction [17], which is basically
a method for time series analysis. The results are then used for designing the
local rules for a non-omniscient agent. The resulting agent showed to be an im-
provement of the standard and already well-performing tit-for-tat strategy by
implementing also forgiveness.



5 Summary and Conclusion

The connection of self-organization to so many disciplines in science is an advan-
tage and a disadvantage at the same time. In terms of definition and terminology,
the many definitions from different domains have blurred the overall idea which
is definitely a disadvantage. On the other hand, the many disciplines keep the
potential for many ideas and new approaches for creating self-organizing control
systems. This possibility will be even more attractive, if the research on SOSs
can converge towards a more standardized nomenclature, probably even forming
a new field of science some day.

Several positive effects from the interdisciplinarity of self-organization became
apparent when discussed possible ways to design the behavior of the particular
entities. The local behavior is an integral part of an SOS, since the overall be-
havior of the system emerges from the local interactions of the entities. We have
identified three basic approaches for finding a suitable set of local rules, namely
bio-inspired design, trial and error, and learning from an omniscient solution.
Bio-inspired design can give promising results, however, due to the differences in
natural evolution and traditional engineering, it has to be applied carefully. The
approach of learning from an omniscient solution might be also interesting for
non-game-theoretic settings. However, the approach relies on the possibility that
the omniscient solution can be build in a simulation and that the behavior can
be mimicked by an agent with local information in a useful way. Trial and error
is definitely the most general approach among the three. However, despite of im-
provements in identifying friction and search algorithms this approach can be too
inefficient so that it may not succeed for a large search space. The right design
approach (which may be also a combined approach) for a particular project will
be defined by the particular constraints and requirements.

We hope that the discussions and suggestions in this paper will be helpful to
future research in the area of SOSs. In the future, we plan on elaborating the
design process for building SOSs by combining existing engineering approaches
with methods especially tailored to SOSs.
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the paper.

References

1. E. A. Lee. Cyber physical systems: Design challenges. Technical Report UCB/EECS-
2008-8, EECS Department, University of California, Berkeley, January 2008.



2. H. von Foerster. On self-organizing systems and their environments. In M. C.
Yovitts and S. Cameron, editors, Self-Organizing Systems, pages 31–50. Pergamon
Press, 1960.

3. H. von Foerster. Principles of the self-organizing system. In H. von Foerster and
Jr. G. W. Zopf, editors, Principles of Self-organization, pages 255–278. Pergamon
Press, 1962.

4. G. G. Lendaris. On the definition of self-organizing systems. Proceedings of the
IEEE, 52(3):324–325, March 1964.

5. H. Haken. Information and Self-Organization – A Macroscopic Approach. Springer,
1988.

6. C. Gershenson and F. Heylighen. When can we call a system self-organizing? In 7th
European Conference on Advances in Artificial Life, ECAL’03, volume LNAI 2801,
pages 606–614. Springer Verlag, 2003.

7. W. Elmenreich. Lakeside Research Days’08. Technical report, Lakeside Labs, Kla-
genfurt, Austria, June-July 2008.

8. S. L. Bloom. Chaos, complexity, self-organization and us. Psychotherapy Review,
2(8), August 2000.

9. S. Camazine, J.-L.Deneubourg, N. R. Franks, J. Sneyd, G. Theraulaz, and
E. Bonabeau. Self-Organization in Biological Systems. Princeton University Press,
2001.

10. Wikipedia, the free Encyclopedia. Evolution. Wikimedia Foundation, August 6
2008.

11. J. McCarthy, M. L. Minsky, N. Rochester, and C. E. Shannon. A proposal for
the dartmouth summer research project on artificial intelligence. Technical report,
Dartmouth College, 1955.

12. C. Prehofer and C. Bettstetter. Self-organization in communication networks: Prin-
ciples and design paradigms. IEEE Communications Magazine, pages 78–85, July
2005.

13. R. Faye, R. Laprete, and M. Winter. Blended winglets. Aero, Boeing, (17), January
2002.

14. C. Gershenson. Design and Control of Self-organizing Systems. PhD thesis, Vrije
Universiteit Brussel, 2007.
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