
Time-Triggered Fieldbus Networks –
State of the Art and Future Applications

(Invited Paper)

Wilfried Elmenreich
Lakeside Labs, Mobile Systems Group,

Institute of Networked and Embedded Systems
University of Klagenfurt

wilfried.elmenreich@uni-klu.ac.at

Abstract
The time-triggered paradigm encompasses a set of con-

cepts and principles that support the design of dependable
real-time systems. By using the properties of physical time
and the mechanism of clock synchronization, coordinated
interaction between distributed nodes can be facilitated.
This paper briefly explains the time-triggered approach, de-
fines a taxonomy for real-time requirements and discusses
seven protocols that provide time-triggered features. Fi-
nally, two application examples are given that show the po-
tential of the time-triggered approach.

1. Introduction

Whenever a system interacts with a real environment
through its sensors and actuators, the aspect of time has
to be considered in order to achieve a correct and mean-
ingful behavior. Although soft real-time systems may cope
with this problem by just providing enough processing and
communication power, there is a fundamental difference in
designing architectures that are required to guarantee hard
real-time properties.

The time-triggered approach is an established paradigm
for designing hard real-time systems with predictable and
guaranteed behavior. The application of the time-triggered
approach is beneficial from the viewpoint of (i) establishing
predictable real-time response times within the network, (ii)
reducing system complexity, and, therefore, facilitating the
design of real-time applications, by introducing an archi-
tecture with a global notion of time and well-defined inter-
faces, (iii) facilitating the processing of sensor data, since
measurements can be synchronized and interpreted on a
global timescale, and (iv) enable the coordination of timely
correlated actions of actuators. The time-triggered approach
has already been successfully applied to safety-critical ap-
plications in cars [29], railway control systems [9] and to
flight-critical functions in aircraft and aircraft engines [29].

The objective of this paper is to provide an overview
of the currently available fieldbus networks providing time-
triggered features and to discuss future applications show-
ing the potential of the time-triggered approach in fieldbus
networks.

This paper is structured as follows: The next section
shortly reviews the time-triggered paradigm. Section 3 dis-
cusses advantages and disadvantages of the time-triggered
approach in the context of fieldbus applications. Section 4
presents a taxonomy of real-time requirements for fieldbus
systems. Section 5 reviews existing fieldbus systems that
apply the time-triggered concept, at least partially. Sec-
tion 6 gives application examples that show further potential
of the time-triggered approach for fieldbus systems. Sec-
tion 7 concludes the paper.

2. The Time-Triggered Paradigm

There are two major design paradigms for construct-
ing real-time systems, the event-triggered and the time-
triggered approach. In principle, an event-triggered system
follows the principle of reaction on demand. In such sys-
tems the environment enforces temporal control onto the
system in an unpredictable manner (interrupts), with a lot
of undesirable problems of jitter, missing precise tempo-
ral specification of interfaces and membership, scheduling
etc. On the other hand, the event-triggered approach is
well-suited for sporadic actions and data, low-power sleep
modes, and best-effort soft real-time systems with high uti-
lization of resources. Event-triggered systems do not ide-
ally cope with the demands for predictability, determinism,
and guaranteed latencies – requirements that must be met in
a hard real-time system.

Time-triggered systems derive control from the global
progression of time, thus the concept of time that appears in
the problem statement appears also as basic mechanism for
the solution:

A real-time system is time-triggered if the control sig-
nals, such as sending and receiving of messages or recogni-
tion of an external state change are derived solely from the
progression of a (global) notion of time (cf. [10]).

This approach supports a precise temporal specifica-
tion of interfaces and the implementation of “temporal fire-
walls” to protect error propagation via control signals. The
Time-Triggered Architecture (TTA), a computing infras-
tructure for the design and implementation of dependable
distributed embedded systems [12], implements the time-
triggered paradigm and supports membership identification,

gymi
Text Box
© IEEE, 2008. This is the author's version of the work. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purpose or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. The definite version is published in Proc. IEEE on Object Oriented Real-Time Distributed Computing (ISORC'08), Orlando, FL, USA, May 2008.



interoperability, and replica determinism.
A basic concept in the time-triggered paradigm is the

global time. For most real-time applications it is sufficient
to model time according to Newtonian physics without re-
garding relativistic effects [14]. Unlike the concept of log-
ical clocks [17], the global time is thus bound to physical
time with a given accuracy. In order to establish a mean-
ingful global time with a given granularity, an ensemble
of physical clocks must be synchronized with a precision
better than the intended granularity. Since all actions are
derived from the global time, the process of creating syn-
chronization is of utmost importance. A fault during syn-
chronization will thus propagate to many relevant parts of
the system. Therefore, clock synchronization approaches
for time-triggered systems typically implement concepts of
fault tolerance and self-stabilization. Some faults might
even cause two sets of correctly working hardware to di-
verge into two cliques with different synchronization. Such
situations are handled by clique avoidance mechanisms,
typically by keeping the larger clique and restarting and re-
integrating the other one. Novel design such as the BRAIN
approach [25] allow to set special policies for startup and
restart in order to keep the nodes which are most important
to the application or which are difficult to restart.

The global time is used to define the instances when
communication and computation of tasks take place in a
time-triggered system. Communication comprises send and
receive operations by particular nodes. Typically, sending
messages takes place in a broadcast manner. The message
length and message sender are known a priori according to
the predefined message schedule.

Computation is realized by the execution of Simple
Tasks, that is tasks that consume their input at task start and
provide their output with task completion. Simple Tasks
do not have synchronization points within the task, and,
therefore, cannot be blocked. For each task an a priori
known upper bound for their Worst Case Execution Time
(WCET) [27] is assumed.

Using a static scheduling algorithm, the tasks and mes-
sages are scheduled to form a collision-free communication
pattern where it is guaranteed that all tasks can finish in time
before their results are used.

Figure 1. Time-triggered scheme for commu-
nication and computation

Such a communication and computation pattern forms
so-called rounds which are periodically repeated. Figure 1
depicts an example for such a time-triggered schedule. For
demonstrative reasons, the timeline has been denoted ac-
cording to the 12 hours as on the face of an analog clock.

The boxes above the timeline represent the planned mes-
sages on a shared communication medium. Collisions are
avoided by design using Time Division Multiple Access
(TDMA) scheduling. The boxes below the timeline corre-
spond to the execution of local tasks. The upper bound of a
task’s execution time is denoted by the dotted lines.

3. Applicability of the Time-Triggered Ap-
proach

Depending on the application type, the time-triggered
approach has its strengths and weaknesses; both are briefly
discussed in the following. Note that there exist also hybrid
approaches that combine the time-triggered approach with
a more flexible approach (e. g., [22], [24]).

3.1 Advantages of the Time-Triggered Approach

With respect to embedded real-time systems, the time-
triggered approach has proven to show the following ad-
vantages:

• The low jitter for message transmission and task exe-
cution is especially advantageous for distributed control
loops.
• The predictable communication scheme simplifies diag-

nosis of timing failures. Furthermore, a timing failure of
a node can be barred from the bus using the concept of a
bus guardian.
• The periodically transmitted messages enable a short and

bounded error detection latency for timing and omission
errors.
• The principle of resource adequacy guarantees the nom-

inative message throughput independent of the network
load. Problems like increasing delays at message floods
or thrashing [3] are avoided by design.
• Due to the predefined schedule, it is possible to derive the

message ID and the message sender from the instant when
a message was received. Using this information enables
high protocol efficiency.
• The time-triggered paradigm avoids bus conflicts using a

TDMA scheme, making an explicit bus arbitration obso-
lete.
• By using a sparse time base, replica determinism be-
tween time-triggered components can be achieved without
the need of complex agreement protocols.
• The TTA supports temporal composability, i. e., the con-

structive design of dependable distributed real-time sys-
tems out of previously validated components while retain-
ing the previously validated properties [13].

3.2 Disadvantages of the Time-Triggered Ap-
proach

A time-triggered system is a specialization of an event-
triggered system where only the time is used as a trigger.
Therefore, there are problems, for which an event-triggered
approach is better suited than a strict time-triggered scheme:



• When a system is required to achieve a low energy con-
sumption over time, as it is the case for wireless sen-
sor networks. In event-triggered systems, messages are
created on demand, i. e., on the occurrence of respective
events. In the time-triggered scheme messages and com-
putations are triggered periodically which causes a perma-
nent and constant energy consumption even during mini-
mum load situations. However, for wireless systems with
a low duty cycle the time-triggered approach can be also a
way to enhance the system lifetime – see Section 6 for an
example.
• When the average response time of the system is of
concern. Event-triggered systems may outperform time-
triggered systems in that aspect since the latter are de-
signed to have a constant response time independent of
the system load, thus the average response time equals the
worst-case response time.
• Time-triggered systems have to plan for an upper bound
for the execution time of each task, in contrast an event-
triggered approach can work with weaker assumptions
such as a global time budget for a set of tasks.
• When it is difficult to fit messages with differing periods
into a static schedule. The length of the static schedule
is defined by the least common multiple of the message
periods, which can lead to a very extensive static schedule
causing memory problems in embedded systems.
• In wireless scenarios where a considerable rate of link
failures cannot be handled by the standard time-triggered
approach. If the node connectivity is also dynamic, a
dynamic re-routing algorithm does not allow for a static
time-triggered approach.
• When it is not possible to establish the required precision
of the global time, e.g., in state-of-the-art chip design with
clock frequencies of several Gigahertz, it is very difficult
to distribute the clock signal across the chip [28, 20].

Most of the problems listed above arise in applica-
tions, where non-real-time or soft real-time requirements
are prevalent over dependability issues such as reliability
and safety.

4. Taxonomy of Real-Time Applications

A real-time computer system must react to stimuli from
the controlled object (or the operator) within time intervals
dictated by its environment. The instant at which a result
must be produced is called a deadline. [10, p.2]

This definition does not include systems like a real-time
clock that does not react on stimuli but has to generate out-
put strongly aligned to the progression of real-time. Since
an embedded system typically can have various tasks to be
performed with respect to the progression of real-time, we
present the following classification of real-time applications
(typically, an embedded system will apply several of the fol-
lowing tasks):

• Performing some action locally with respect to real time,
such as generating a particular Pulse-Width Modulation
(PWM) signal or making a measurement every 100 ms.

If the quality (drift) of the (local) clock source is suffi-
cient to provide a useful time base, this application can be
achieved without the need for clock synchronization.
• Timestamping events can be used to temporally relate
measurements to each other and, in consequence, make
global interpretations based on a set of distributed mea-
surements. In order to create timestamps with a global
validity, a synchronized global time is required among the
participating nodes. In most cases, clock synchronization
has to be done periodically in order to compensate for the
drift of the local clocks. Once a global time is established,
timestamping does not impose real-time requirements on
the communication system, since timestamped events can
be locally stored.
• Bounded maximum reaction time requires the communi-

cation system to deliver messages within a specified time
interval. Standard feedback control algorithms also re-
quire low message jitter in order to work correctly.
• Globally synchronized actions require the synchronized

generation of action triggers in different nodes. This can
be achieved by a multi-cast message or assigning actions
to an instant on the globally synchronized time scale.

This classification can be combined with the notion of
hard/soft real-time requirements, that is a deadline can be
either hard, i. e., deadlines must be met under all circum-
stances or soft, i. e., the system is still of use if deadlines
are violated infrequently. Some architectures implement
a subset of the described features or provide different fea-
tures with hard or soft real-time behavior. For example, the
LAAS architecture [1] for component-based mobile robots
specifies local hard real-time behavior for tasks such as a lo-
cally closed control loop or the instrumentation of an ultra-
sonic sensor, while at higher levels, e. g., for globally syn-
chronized actions it provides only soft real-time behavior.

5. State of the Art of Time-Triggered Fieldbus
Systems

5.1. Time-Triggered Protocol (TTP)

Time-Triggered Protocol (TTP), Time-Triggered Pro-
tocol for SAE class A applications (TTP/A) and Time-
Triggered Ethernet (TTE) are protocols out of a family of
protocols for the TTA. TTP (or TTP/C) focuses on the in-
terconnection of components in order to form a highly de-
pendable real-time system that is sufficient for critical ap-
plications such as X-by-wire in the automotive and avionics
domains. TTP implements a replicated bus system and a
guardian that prevents babbling idiot failures. Currently, it
supports transmission rates of up to 25 MBit/s.

The protocol does not require a central node as time mas-
ter or bus manager, instead the nodes interact at startup
to agree on a common synchronized timebase that is used
to define instants of action and communication in the sys-
tem. The protocol is fault-tolerant to a single arbitrary faulty
node in the start-up phase as well as during the synchronous
operation.



The time-base that has been established by the start-up is
used for distributed message scheduling as well as for local
process scheduling. Furthermore the timebase is available
to the application as global synchronized time. Thus, TTP
inherently supports all four kinds of real-time requirements
as defined in Section 4.

TTP assumes to have a priori defined action and com-
munication patterns. In order to support also event-
triggered legacy systems such as CAN applications, the
time-triggered layer of TTP has been enhanced to emulate
event messages.

5.2. TTP/A

TTP/A [15] is a time-triggered master-slave fieldbus sys-
tem. The master establishes a global time and announces
the beginning of a communication round by issuing a so-
called fireworks message. Following the fireworks, all
nodes follow a common collision-free communication pat-
tern as depicted in Figure 2.

Figure 2. TTP/A communication round

As in TTP, the schedule and global time is known to all
nodes, however TTP/A supports an on-line update function
of the schedule during operation. TTP/A inherently sup-
ports all four kinds of real-time requirements as defined in
Section 4.

TTP/A was designed to support an easy and econom-
ically feasible integration of sensors and actuators into a
real-time network. TTP/A can be implemented in soft-
ware on low-cost microcontrollers. The interface concept
of TTP/A supports a modular design and an easy integra-
tion and management of transducers.

In contrast to TTP, TTP/A has no fault-tolerant capabili-
ties that can handle arbitrary node faults, but is more flexible
by providing means of online configuration. The interface
implemented by the TTP/A protocol has been standardized
with the OMG Smart Transducer Interface [23]. An imple-
mentation of TTP/A for Atmel AVR is available under an
Open Source License1. At present, TTP/A supports trans-
mission rates of up to 100 KBit/s.

5.3. Time-Triggered Ethernet

TTE [11] is a time-triggered protocol that uses Ethernet
as physical layer. It establishes a global synchronized time
that is then used to execute a distributed time-triggered com-
munication scheme. TTE allows also the use of standard
Ethernet frames to support event-triggered data, whereas a

1http://www.vmars.tuwien.ac.at/ttpa/

dedicated TTE-Switch takes care that time-triggered frames
are not delayed by other frames.

TT Ethernet builds on a well-known physical layer and
is intended to support all types of applications, from sim-
ple data acquisition systems, to multimedia systems up to
safety-critical real-time control systems.

5.4. Flexray

Flexray [5] is a fieldbus system for automotive applica-
tions such as X-by-wire. Flexray has been developed and
is supported by a consortium of automotive manufacturers
and suppliers including BMW, DaimlerChrysler, Volkswa-
gen, Bosch, General Motors, Freescale and NXP Semicon-
ductors.

The FlexRay protocol consists of a time-triggered part,
where messages are scheduled according to an a priori de-
fined TDMA schedule and a flexible part supporting spo-
radic traffic. The flexible part is based on the Byteflight
protocol [26] that uses minislotting in order to provide a
collision-free communication that does not interfere with
the time-triggered part. Flexray implements a global syn-
chronized timebase that supports synchronized actions.

Flexray supports a communication speed of up to 10
MBit/s.

5.5. TTCAN

Time-Triggered Controller Area Network (TTCAN) [6]
is a time-triggered protocol that builds on the event-
triggered CAN protocol [7]. In its extension level 2,
TTCAN establishes a global synchronized time derived
from periodically broadcasted synchronization frames by a
time master node. This synchronized time can be used to
program an event-trigger in the application code, thus en-
ables synchronized actions.

The TTCAN protocol is implemented in hardware using
a dedicated TTCAN controller. TTCAN integrates time-
triggered frames with standard event-triggered frames. The
event-triggered part uses the standard CAN arbitration to
avoid collisions.

5.6. WorldFIP and Foundation Fieldbus

WorldFIP [21] and Foundation Fieldbus [30] are in-
dustrial fieldbusses providing a hybrid approach for trans-
mitting time-triggered and event-triggered data. Both ap-
proaches use a similar scheme, since in fact the Foundation
Fieldbus is a functional superset of WorldFIP. The Foun-
dation Fieldbus variant FF H1 is indented for automation
applications at field level.

The concept is implemented by periodic and aperiodic
processes. Periodic processes are time-triggered processes
initiated at predetermined points in time. Aperiodic pro-
cesses handle event-triggered traffic that is delivered as soon
as possible but with considerable jitter in the message deliv-
ery time. Both message types are scheduled on a single bus
with a MAC protocol based on centralized arbitration by a
bus manager.



Name Bandwidth Clock synchronization Dependability TT concept Level of Automation
TTP 25 MBit/s fault-tolerant distributed high fully TT cell level
TTP/A 100 kBit/s master-slave low fully TT field level
TTE 100 MBit/s fault-tolerant distributed high coexistent TT and ET traffic field or cell level
Flexray 10 MBit/s fault-tolerant distributed high coexistent TT and ET traffic field level
TTCAN 1 Mbit/s master-slave medium coexistent TT and ET traffic field or cell level
FF H1 31.25 kBit/s master-slave medium TT only at application level field level
LIN 20 kBit/s master-slave low TT only at application level field level

Table 1. Feature comparison of time-triggered buses.

From the application’s viewpoint, the Foundation Field-
bus could be considered a time-triggered protocol. Note
however the following properties that are untypical for time-
triggered systems: (i) The scheduling table for the periodic
data is not provided to the single nodes (ii) The nodes are
not aware of a global time which could be used in the appli-
cation (iii) The scheduling decisions are not directly based
on a global time, but are done by the bus manager (which
bases its decision on timing)

5.7. Local Interconnect Network (LIN)

LIN is tailored to serve as sub-bus for body electronics in
automobiles. Design guidelines for LIN had been low hard-
ware costs, robust operation, real-time support, and easy
implementation (e.g. by a software protocol layer in an 8-
Bit Microcontroller Unit (MCU)).

LIN is basically a polling protocol, where a central mas-
ter issues request messages to the slave nodes. The master
node acts also as a gateway to a higher network. The slave
nodes are smart transducers which are waiting for specific
request messages in order to set a control value or to send
a measured value as reply. The master issues request mes-
sages on a predefined schedule, while the slave nodes are
not aware of a global time or the current state of the sched-
ule. This simplifies the implementation of the slave nodes,
but does not support coordinated actions like synchronized
measurements. Due to the polling principle (requesting a
value involves the request message, a “thinking time” for
the slave node and sending the reply message), the effec-
tive bandwidth of a LIN network supports only applications
with low bandwidth requirements, such as less critical body
electronic functions in cars.

In order to save bandwidth, the LIN 1.3 specification was
enhanced to LIN 2.0 including unconditional frames and
event-triggered frames. These frames must be also triggered
by the master, but the slaves’ response may depend on local
information, e. g., if a measurement value has changed since
the last time or not.

The polling principle in LIN makes a node’s imple-
mentation very simple, but causes an overhead on the net-
work due to the frequent message requests from the master.
Moreover, since the LIN slaves do not know the time of a
request a priori, it becomes difficult to time a measurement
adequately or to synchronize measurements.

5.8. Comparison

Table 1 depicts the main features of the presented time-
triggered protocols. The level of automation refers to the
concept of field, cell, and management level in industrial
automation.

TTP is considered mainly feasible for the cell level when
considering cost constraints. TTE might be a promising
candidate for the cell level (due to its high speed and de-
pendability) as well as for the field level (because of its ex-
pected low cost). A similar prospect exists for TTCAN.

At the low-cost end, TTP/A, LIN, and Foundation Field-
bus provide time-triggered solutions at the fieldbus level.
However, only TTP/A can be considered a true time-
triggered protocol that fully utilizes the concept of global
time and thus supports all four types of applications as dis-
cussed in Section 4. While LIN is the solution with the low-
est cost, Foundation Fieldbus is the only bus with consider-
able market share in the automation domain among those
three.

6. Auspicious Applications of Time-triggered
Fieldbus Systems

The previous sections gave an overview of the state of
the art of applying the time-triggered paradigm in fieldbus
systems. In the following, we will discuss two application
examples from the domain of wireless systems and high-
dependable control systems.

6.1. Time-triggered Wireless Networks

Up to now, real-time wireless fieldbus systems were
mostly reduced to cable replacement [16] using IEEE
802.15.1/Bluetooth (e. g., replacing traditional serial inter-
faces such as RS232, RS422 and RS485 by a wireless point-
to point or master/slave multi-point connection) and appli-
cations with low or soft real-time requirements. Other ini-
tiatives like the R-Fieldbus [8] have not found much accep-
tance among industrial applications.

The time-triggered approach has found even less appli-
cation in the wireless domain, due to the strict limitations
on bandwidth and battery lifetime. In wireless systems
the event-triggered paradigm is typically preferred over the
time-triggered one, since in event-triggered systems a mes-



sage is only sent if there is the need to send. In that way less
energy is consumed for sending data.

However, typical radio nodes such as the AVR R©Z-
LinkTM802.15.4/ZigBee nodes have a similar high power
consumption for sending and being in receive mode. Using
a time-triggered communication scheme, the energy con-
sumption can be reduced by entering a sleep mode and turn-
ing off the radio in periods, when, due to a priori knowledge
no transmission is to be expected.

Thus, for wireless systems with a low duty cycle the
time-triggered approach can be less energy consuming since
the knowledge of message transmission instants allows to
suspend the receiving units for the duration between two
transmissions. A case study using this approach has been
implemented by establishing global synchronization us-
ing a self-organizing algorithm and then applying a time-
triggered communication scheme.[18]

Results (see Figure 3) indicated the possibility to extend
the lifetime of the battery powered nodes up to a factor of
about four (depending on the duty cycle).

Figure 3. The lifetime improvement as a func-
tion of the period time.

6.2. Fault-tolerant Actuating

In the time-triggered protocols that claim to be fault-
tolerant (TTP, TTE, Flexray, TTCAN) the fault hypothe-
sis mainly focused on network faults like faulty messages.
However, when it comes to a fault-tolerant application, also
the points of data acquisition, i. e., measurement and actu-
ation is of interest. Solutions for fault-tolerant and robust
measurement can be found in [19, 2, 4]. In the following
we briefly discuss fault-tolerant actuation in the context of
time-triggered systems.

Time-triggered systems are of special interest to fault-
tolerant actuating, since in most cases, (i) a faulty ac-
tion cannot be undone at a later instant, and, (ii) the non-
synchronous execution of correct actions from independent
actuators may lead to unwanted behavior. Think, for ex-
ample, of a car having wheels that can be steered indepen-
dently. First, an incorrect action, like an unwanted turn

might lead to an uncontrollable skidding car and further
consequences. Second, when deciding to make a turn hav-
ing one wheel turning before the other one due to synchro-
nization problems might lead to the same behavior, even if
the two actions separately may be within tolerance.

Figure 4. Fault-tolerant actuating using triple
modular redundancy.

Figure 4 gives an example of a fault-tolerant actuation.
The controlled object is assumed to show low-pass behavior
due to physical issues. In order to ensure correct behavior
even in the case of failure of one of the replicated actuators,
it must be ensured that (i) the control signals are synchro-
nized with a precision better than the cut-off frequency of
the low pass element, and, (ii) the control decisions of the
correctly operating components are replica-deterministic.
In order to achieve these requirements, a time-triggered ar-
chitecture using a precisely synchronized fieldbus is ade-
quate. Furthermore, a closely synchronized action setting
is of advantage in order to minimize mechanical stress that
is created if actuators work against each other. Thus, time-
triggered systems support a timely closely correlated action
setting while the decision process can be derived indepen-
dently redundant via different fault containment regions.

7. Conclusion and Outlook

The time-triggered paradigm is more than just applying
a TDMA message scheduling to a bus. The discussed pro-
tocols differ, besides parameters such as cost and speed also
in the way, how much the concept of time is used as the so-
lution to a problem than just being the problem itself. TTP,
TTE, Flexray show similarities in the way that they imple-
mented a distributed clock synchronization algorithm and
provide a global synchronized time that can also be used
by the application to achieve real-time tasks. TTP/A and
TTCAN use a central master to provide some coordination,
but nevertheless establish a global synchronized time in all
the nodes.

On the other hand, LIN, WorldFIP and Foundation Field-
bus have chosen a concept where the slave nodes are trig-
gered by a central master instead of being triggered by the



progression of time. Although at application level this ap-
proach provides similar features like a true time-triggered
one, there are shortcomings when it comes to diagnosis and
support for coordinated actions. These features are still pos-
sible with these systems, however it requires additional ef-
fort to implement them, while in fully time-triggered sys-
tems they come for free.

Acknowledgments

I would like to thank my colleagues Michael Gyarmati and
Michael Paulitsch for proofreading and comments on an earlier
version of this paper. This work was supported by the Austrian
FWF project TTCAR under contract No. P18060-N04.

References

[1] R. Alami, R. Chatila, S. Fleury, M. Ghallab, and F. In-
grand. An architecture for autonomy. International Journal
of Robotics Research, 17(4):315–337, Apr. 1998.

[2] P. Chew and K. Marzullo. Masking failures of multidimen-
sional sensors. In Proceedings of the 10th Symposium on
Reliable Distributed Systems, pages 32–41, Pisa, Italy, Oct.
1991.

[3] P. J. Denning. Thrashing: Its causes and prevention. In Pro-
ceedings AFIPS Fall Joint Computer Conference, volume 33,
pages 915–922, 1968.

[4] W. Elmenreich. Fusion of continuous-valued sensor mea-
surements using confidence-weighted averaging. Journal of
Vibration and Control, 13(9-10):1303–1312, 2007.

[5] Flexray Consortium. FlexRay Communications System
Protocol Specification Version 2.1, 2005. Available at
http://www.flexray.com.

[6] T. Führer, B. Müller, W. Dieterle, F. Hartwich, R. Hugel,
and M. Walther. Time triggered communication on CAN
(Time Triggered CAN–TTCAN). In 7th international CAN
Conference, 2000.

[7] R. B. GmbH. CAN specification version 2.0, Sept. 1991.
[8] J. Haehniche and L. L. Rauchhaupt. Radio communication in

automation systems: the r-fieldbus approach. In Proceedings
of the IEEE International Workshop on Factory Communica-
tion Systems, pages 319–326, Porto, Portugal, Sept. 2000.

[9] G. Heiner and T. Thurner. Time-triggered architecture for
safety-related distributed real-time systems in transportation
systems. In Proceedings of the The Twenty-Eighth An-
nual International Symposium on Fault-Tolerant Computing,
pages 402–407, 1998.

[10] H. Kopetz. Real-Time Systems, Design Principles for Dis-
tributed Embedded Applications. Kluwer Academic Publish-
ers, Boston, Dordrecht, London, 1997.

[11] H. Kopetz, A. Ademaj, P. Grillinger, and K. Steinhammer.
The Time-Triggered Ethernet (TTE) design. In Proceed-
ings of the 8th International Symposium on Object-Oriented
Real-Time Distributed Computing (ISORC), pages 22–33,
Seattle, WA, USA, May 2005.

[12] H. Kopetz and G. Bauer. The Time-Triggered Architecture.
Proceedings of the IEEE, 91(1):112–126, Jan. 2003.

[13] H. Kopetz and R. Obermaisser. Temporal composabil-
ity. IEE’s Computing & Control Engineering Journal,
13(4):156–162, Aug. 2002.

[14] H. Kopetz and N. Suri. Compositional design of RT systems:
A conceptual basis for specification of linking interfaces. Re-
search Report 37/2002, Technische Universität Wien, Institut
für Technische Informatik, Vienna, Austria, 2002.

[15] H. Kopetz et al. Specification of the TTP/A protocol. Re-
search Report 61/2002, Technische Universität Wien, Insti-
tut für Technische Informatik, Vienna, Austria, Sept. 2002.
Version 2.00.

[16] K. Koumpis, L. Hanna, M. Andersson, and M. Johansson.
Wireless industrial control and monitoring beyond cable re-
placement. In Proceedings of the PROFIBUS International
Conference, pages C1:1–7, UK, June 2005.

[17] L. Lamport. Time, clocks, and the ordering of events in a
distributed system. Communications of the ACM, 21(7):558–
565, July 1978.

[18] R. Leidenfrost and W. Elmenreich. Establishing wireless
time-triggered communication using a firefly clock synchro-
nization approach. In Proceedings of the Sixth International
Workshop on Intelligent Solutions in Embedded Systems, Re-
gensburg, Germany, July 2008.

[19] K. Marzullo. Tolerating failures of continuous-valued sen-
sors. ACM Transactions on Computer Systems, 8(4):284–
304, Nov. 1990.

[20] J. Muttersbach, T. Villiger, H. Kaeslin, N. Felber, and
W. Fichtner. Globally-asynchronous locally-synchronous ar-
chitectures to simplify the design of on-chip systems. In Pro-
ceedings of the twelfth Annual IEEE International ASIC/-
SOC Conference, pages 317–321, Washington DC, USA,
Sept. 1999.

[21] P. Noury. WorldFIP, IEC 61158 and the inter-
net: A new look at fieldbuses, 1999. Available at
http://www.worldfip.org/noury02.html.

[22] R. Obermaisser. Event-Triggered and Time-Triggered Con-
trol Paradigms, volume 22. Springer Real-Time Systems Se-
ries, 2005.

[23] Object Management Group (OMG). Smart Transduc-
ers Interface V1.0, Jan. 2003. Specification avail-
able at http://doc.omg.org/formal/2003-01-01 as document
formal/2003-01-01.

[24] D. Paret. Multiplexed Networks for Embedded Systems. John
Wiley & Sons, Ltd, 2007.

[25] M. Paulitsch and B. Hall. Starting and resolving a partioned
BRAIN. In Proceedings of the 11th International Sympo-
sium on Object-Oriented Real-Time Distributed Computing
(ISORC), Orlando, FL, USA, May 2008.

[26] M. Peller, J. Berwanger, and R. Giessbach. Byteflight spec-
ification draft version 0.5. Technical report, BMW AG Mu-
nich, 1999.

[27] P. Puschner and A. Burns. A review of worst-case execution-
time analysis. Journal of Real-Time Systems, 18(2/3):115–
128, May 2000.

[28] P. J. Restle and A. Deutsch. Designing the best clock distri-
bution network. In Proceedings of the Symposium on VLSI
Circuits Digest of Technical Papers, pages 2–5, 1998.

[29] J. Rushby. A comparison of bus architectures for safety-
critical embedded systems. Technical Report NASA/CR-
2003-212161, National Aeronautics and Space Administra-
tion, Langley Research Center, Mar. 2003.

[30] Z. Wang, Z. Yue, K. Chen, Y. Song, and Y. Sun. Realtime
characteristic of ff-like centralized control fieldbus and its
state-of-art. In Proceedings of the IEEE International Sym-
posium On Industrial Electronics, pages 140–145, 2002.




