
An Architecture supporting Monitoring and Configuration in
Real-Time Smart Transducer Networks

Philipp Peti
Vienna University of

Technology, Vienna, Austria
pp@vmars.tuwien.ac.at

Roman Obermaisser
Vienna University of

Technology, Vienna, Austria
ro@vmars.tuwien.ac.at

Wilfried Elmenreich
Vienna University of

Technology, Vienna, Austria
we@vmars.tuwien.ac.at

Thomas Losert
Vienna University of

Technology, Vienna, Austria
tl@vmars.tuwien.ac.at

Abstract
A smart transducer network consists of a set of transducer nodes
interconnected with a digital bus. Smart transducer technology
implicates the development of systems supporting the timely ex-
change of real-time data. Additional requirements are support
for system integration, mechanisms for dynamic reconfigura-
tion, and diagnostic interfaces. Such systems should be com-
posable and ease controlling system complexity, i. e. support the
system engineer in understanding the system behavior.
Furthermore, developers expect diagnostic services, which are
deterministic, reproducible, and do not interfere with real-time
services. This paper describes three interfaces for smart trans-
ducer networks, which provide the required services while yield-
ing the mentioned properties. We describe a case study demon-
strating the effectiveness of the three interfaces for the pro-
claimed purpose.

INTRODUCTION
In 1982 Wen H. Ko and Clifford D. Fung introduced the term
“intelligent transducer” [1]. An intelligent orsmart transducer
is the integration of an analog or digital sensor or actuator el-
ement and a local microcontroller that contains the interface
circuitry, a processor, memory, and a network controller in a
single unit. The smart sensor transforms the raw sensor signal
to a standardized digital representation, checks and calibrates
the signal, and transmits this digital signal via a standardized
communication protocol to its users [2].
Smart transducer technology implicates the development of
transducer networks, that allow monitoring, plug-and-play con-
figuration and the communication of digitized transducer data.
Such a smart transducer network provides a framework that
helps to reduce the complexity and cost of large distributed
real-time systems.
This paper identifies essential services of a smart transducer
network. We elaborate on mandatory requirements for inter-
faces designed for the provision of these services. The pa-
per argues that the three interfaces, which are proposed in [3],
are well-suited for establishing these services while satisfying
the presented interface requirements. We present a case study
demonstrating the effectiveness of the three interfaces by exam-
ining the provision of the identified services and the fulfillment
of the interface requirements.

Structure
The paper is organized as follows. Section 2 elaborates on smart
transducer interface issues, namely desired services and inter-
face properties of a smart transducer network. It also describes
three interfaces developed for this purpose. Section 3 defines the
concept of the interface file system (IFS), which is a temporally
specified common name space for the three interfaces. Section
4 presents the case study which argues why the three interfaces

available through the IFS achieve the desired interface proper-
ties. It shows two smart transducer networks employing the
fieldbus protocol TTP/A. The paper finishes with a conclusion
in Section 5.

SMART TRANSDUCER INTERFACE ISSUES
An interface is a common boundary between two subsystems. A
correctly designed interface should provide an understandable
abstraction to the interfacing partners. Such an interface pro-
vides essential properties and hides irrelevant details. Thereby,
it eases the understanding of the component interactions and
helps to control the system complexity. It offers only informa-
tion that is required by the user of the specific services available
via the interface. Nevertheless, a properly designed interface
has to provide completeness by making all information acces-
sible, which is required for using a component’s services. The
distinction between relevant and irrelevant properties mainly
depends on the purposes of the interactions at the interface.
Therefore, different interfaces should be provided for different
purposes.

Essential Services
This section describes services for real-time smart transducer
networks. In addition to the support for the timely exchange
of real-time data, diagnostic services offer insight into the sys-
tem for a maintenance engineer. The system integration out
of autonomously developed components requires configuration
services.

Timely Exchange of Real-Time Data
A real-time smart transducer network must guarantee the trans-
mission of real-time data with a predictable timing and low
jitter. This information is normally used for control purposes
(e.g., periodic execution of a control loop), where the quality of
control is degraded by jitter [4].

Diagnostic Service Required
Diagnostic activities are commonly referred to as monitoring.
One function of monitoring is the collection of runtime informa-
tion of a real-time system for testing and debugging. Monitoring
is often an effective procedure for locating incorrect system be-
haviors and serves the purpose of a debugging tool [5]. In a
safety critical real-time system it can provide additional confi-
dence for the validity of a static analysis. In non safety-critical
real-time systems rare system failures may be accepted for eco-
nomic reasons. Therefore, developers prefer dynamic debug-
ging and testing instead of a static analysis due to lower cost
and complexity.

Support for System Integration Necessary
In many engineering disciplines, large systems are built by the
constructive integration of well-specified and pre-tested subsys-



tems, called components. During the system integration phase
thesystem is formed out of the independently developed com-
ponents. Configuration is the customization of a component
to fit into the system (e. g. parameterization of a sensor node,
assignment of communication parameters, etc.).

Configuration is aided by electronic datasheets that contain all
relevant information of a transducer [6]. This information is as-
signed statically to each smart transducer. The smart transducer
may either contain the electronic datasheet on-chip in persistent
memory or the electronic datasheet may be available through
a configuration server on the Internet. In this case the smart
transducer contains merely a reference to an external electronic
datasheet repository. Hence human errors associated with en-
tering sensor parameters manually are completely eliminated.
Losing transducer paper data sheets is no longer a concern.
Enhanced capabilities like plug and play are possible [7].

Constraint Checking
Monitoring also aids in the automatic detection and handling
of anomalous system states. If erroneous conditions described
by monitoring constraints occur, a monitoring application can
initiate corrective actions. In [8] a monitoring technique has
been developed which supports detection and handling of timing
errors. Another approach is called forced validity [9]. Upon the
detection of constraint violation, the faulty data value is reset to
a valid value.

Dynamic Reconfiguration
Distributed real-time systems require the possibility for on-
the-fly configuration and maintenance without a system shut
down [10]. This allows the accommodation of the system to
evolutionary changes, which is especially important for net-
works with a long expected lifetime.

Desired Interface Properties
This section elaborates on desired properties of interfaces for
smart transducer networks.

Temporal Composability
In a composable architecture, the system integration should pro-
ceed without unintended side effects. For an architecture to be
composable, it must adhere to four principles of composabil-
ity [11], namely independent development of nodes, stability
of prior services, performability of the communication system,
and replica determinism.

Control Complexity
This requirement is derived from the characteristics of human
cognitive information processing [12]. A smart transducer in-
terface must limit the amount of information that must be dealt
with.

Non-Interference with Real-Time Service
The real-time communication services must not be effected by
other services. In particular the temporal correctness of the
real-time services must be independent of monitoring and con-
figuration activities.

Diagnostic Interface Requirements
Monitoring and debugging of distributed embedded real-time
systems differ significantly from debugging and testing pro-
grams for desktop computers, because only few interfaces to
the outside world are present [13]. In addition, a distributed
system contains multiple locations of control and therefore con-
ventional break-point techniques result in an undesired modi-
fication of the timing behavior. This indeterministic effect is
called the “Probe Effect” [14, 5] or the “Heisenberg Uncer-
tainty” [15] applied to software. Therefore a vital property of
a convenient monitoring environment is the absence of distur-
bances or intrusions on the system behavior. Users expect tools
to avoid the probe effect and to incorporate a deterministic and
reproducible behavior.
Much research has focused on monitoring, debugging, configu-
ration, and maintenance of distributed real-time systems. How-
ever, existing tool sets generally neglect a subset of the major
monitoring qualities like reproducibility, determinism and the
elimination of the probe effect.

Local Sensor
Application

Sensor or
Actuator

Read and Write Access

Interface File
System

Real-Time Service
Interface

Configuration and
Planning Interface

Diagnostics and
Management Interface

Figure 1. Three Interfaces of a Smart Transducer Node

A useful monitoring interface must satisfy the following quali-
ties [16, 17]:
Elimination of the Probe Effect: The act of observing

a distributed real-time system can change its behavior.
Existing errors can be hidden and new errors can be intro-
duced. Due to multiple locations of control, the halting
of a single control path introduces a temporal distortion.
Therefore a vital property of a convenient monitoring en-
vironment is the absence of disturbances or intrusions on
the system behavior.

Deterministic Monitoring: Deterministic monitoring means
that all conditions are observed, which cause a specific
system behavior. For deterministic monitoring all enti-
ties must be observed with respect to contents, order and
timing.

Reproducible Monitoring: Reproducible monitoring is ad-
vantageous for debugging, since erroneous conditions can
be deterministically reproduced. For sustaining repro-
ducibility in a conventional sequential program, it is suf-
ficient to start at the same initial state and to provide the
same inputs. In a real-time system, there is the additional



requirement for a reproducible timing behavior. There-
fore, the inputs have to be reproduced with respect to
contents, order and timing. Tasks have to be executed in
the same order and the probe effect must be eliminated.

Service Provision: Smart Transducer Interfaces
For the provision of the previously described services three
distinct interfaces can be applied [3]. This approach helps to
control complexity by using different interfaces for different
purposes. Figure 1 depicts the three interfaces of a smart trans-
ducer node.

Real-Time Service (RS) Interface
The RS interface provides the timely real-time services to the
component environment during the operation of the system. In
real-time systems it is a time-sensitive interface that must meet
the temporal specification of the architecture in all specified
load and fault scenarios. The composability of an architecture
depends on the proper support of the specified RS interface
properties (in the value and in the temporal domain) during
the operation. From the point of a user, the internals of the
component are not visible, since they are hidden behind the RS
interface.

Diagnostic and Management (DM) Interface
The DM interface does not contribute to the composability and
is normally not time-critical. The DM interface opens a com-
munication channel to the internals of a component. It is used
for setting component parameters and for retrieving informa-
tion about the internals of the component, e.g., for the purpose
of internal fault diagnosis. The maintenance engineer that ac-
cesses the component internals via the DM interface must have
detailed knowledge about the internal structure and behavior of
the component.

Configuration and Planning (CP) Interface
The CP interface is used to connect a component to other com-
ponents of a system. It is used during the integration phase
to generate the "glue" between the nearly autonomous compo-
nents. The use of the CP interface does not require detailed
knowledge about the internal operation of a component.

INTERFACE FILE SYSTEM
The Interface File System (IFS) [2] provides the name space for
three interfaces discussed above. The communication among
the IFS is fully temporally specified. The IFS is a unique ad-
dressing scheme for memory that contains, for example, trans-
ducer data (sensor measurements and/or set values for actuators,
if necessary a history on former measurements), communica-
tion schedules, self-describing information (either locally stored
information about the node’s type, capabilities, etc. or a refer-
ence to a transducer electronic data sheet somewhere outside the
fieldbus network, e. g. on the vendors web page), and internal
state information for maintenance and diagnostic purposes.
The IFS is the source and sink for all communication activities
via the three interfaces. The RS interface accesses the transducer
data, the CP interface handles the configuration settings while
the DM interface is used to monitor the internals of the node
and to manage the sensor settings.

App

Prot
IFS

Prot

App
IFS

App
IFS

Prot

Internet
RS232

Wireless
...

Prot

Prot
IFS

SB

Sensor / Actuator

Smart Transducer

Microcontroller

Figure 2. Physical Network Topology

Theaddress space of the IFS is organized hierarchically repre-
senting a static file structure:

Cluster name: An 8 bit integer value that selects a cluster
which is a network of fully interconnected nodes. Native
communication (without routing) among nodes is only
possible within the same cluster.

Node Alias: The node alias or logical name selects a particular
node. Aliases can have values from0...255, but some
values have a special meaning, e. g. alias 0 addresses all
nodes of a cluster in a broadcast manner.

File Name: The file name addresses a certain file within a
node. A file name consists of a 6-bit identifier. Some
file names have a consistent meaning in all nodes. Each
file has a statically assigned number of records, located
in ROM or RAM memory or even generated at runtime.
The first record of each file is called the header record and
contains the file length and a read-only flag.

Record Number: The record number is an 8-bit identifier that
addresses the record within the selected file. Addressing
a non-existing record of a file yields an error.

Figure 2 depicts the topology of a smart transducer cluster. All
transducer nodes are built as smart transducers and contain a
physical sensor or actuator, a microcontroller, and a network
interface. The local application that accesses the sensor or
actuator uses the IFS as a data source and sink. The leftmost
node in the figure depicts a gateway node that connects the
fieldbus to a different network. The gateway node hosts a
second protocol layer that interconnects the fieldbus to other
systems.
A time-triggered sensor bus (TTSB) will perform a periodical
time-triggered communication to copy data from the IFS to the
fieldbus and write received data into the IFS.
It is the task of the protocol to keep consistency among the
local copies of the IFS data elements. A predefined commu-
nication schedule defines time, origin, and destination of each
protocol communication. The instants of updates are specified
a priori and known by the communicants. Thus, the IFS acts
as atemporally specified interface that decouples the local
transducer application from the communication task.

App AppApp

Distributed Interface File System

Figure 3. Logical Network Structure

The programmer’s view of the network can be simplified by
abstracting over the protocol communication. Thus, any ap-



plication “sees” just the IFS in the logical network structure
depictedin Figure 3.

CASE STUDY
The focus of the case study lies in showing the effectiveness
of the three transducer interfaces (RS,DM,CP) for providing
the essential transducer services with compliance to the desired
interface properties. The case study applies the time-triggered
fieldbus protocol TTP/A for providing the three interfaces.
It introduces a network architecture consisting of three distinct
levels (see Figure 4).

��������

������	

��
��

������
�

������
���������������������

�����������
�����

������
�
�����

�������
���������
�����������

��������
�����

������

��
��

Figure 4. Network Architecture Levels

The fieldbus level connects the smart transducer nodes via a
TTP/A network. It offers the predictable, timely exchange of
real-time data with low jitter.
At the workstation level monitoring and configuration activities
take place. Emphasis was set on the realization of the previ-
ously described monitoring qualities, namely reproducibility,
determinism, and the elimination of the probe effect.
At the Internet level a CORBA server is used to establish avail-
ability of DM and CP services via the internet.
The implementation of the case study occurred as part of the
development of two TTP/A smart transducer networks. These
networks controlled an autonomous mobile robot and a demon-
strator with an arm prosthesis [18, 19, 20].

Fieldbus Level: TTP/A
TTP/A is a time-triggered master/slave communication protocol
for fieldbus applications that uses a time division multiple access
(TDMA) bus arbitration scheme [21]. It is possible to address
up to 255 nodes on a bus. One single node is the active master.
This master provides the time base for the slave nodes. The
communication is organized into rounds. Bus access conflicts
are avoided by a strict TDMA schedule for each round. A round
consists of several slots. A slot is a unit for transmission of one
byte of data. Data bytes are transmitted in a standard UART
format. Each communication round is started by the master
with a so-called fireworks byte. The fireworks byte defines the
type of round.
A TTP/A round (see Figure 6) consists of a configuration de-
pendent number of slots and an assigned sender node for each
slot.

(a) Mobile Car

(b) Arm Prosthesis

Figure 5. Demonstrators

The configuration of a round is defined in the RODL (ROund
Descriptor List). The RODL defines which node transmits in
a certain slot, the semantics of each individual slot, and the
receiving nodes of a slot. RODLs must be configured in the slave
nodes prior to the execution of the corresponding multipartner
round.
A master/slave round is a special round with a fixed layout that
establishes a connection between the master and a particular
slave for reading/writing monitoring or configuration data, e. g.
the RODL information. In a master/slave round the master
addresses a data record in the IFS format and specifies an action
like reading, writing or executing on that record.

Figure 6. A TTP/A Round

Provision of the Three Interfaces in TTP/A
In TTP/A theRS interface is implemented through multipart-
ner rounds. The master/slave rounds establish theCP and
DM interface to the transducer nodes. Master/slave rounds
are intended to be scheduled periodically between multipartner
rounds as depicted in Figure 7.
They should even be scheduled in the absence of monitoring
activities – thereby avoiding a modification to the timing behav-
ior during diagnostic activities. Thus no interference with the
real-time service can occur.

Figure 7. Recommended TTP/A Schedule



Workstation Level
Theworkstation level consists of both a local monitoring appli-
cation and a CORBA server module representing the interface to
remote monitoring clients. The local monitoring application al-
lows monitoring, maintenance and dynamic configuration with-
out indeterministic delays caused by the Internet. Remote client
applications performing monitoring, diagnosis or configuration
tasks access the Interface File System of the fieldbus level by
sending requests to the CORBA Server Module.
The diagnostic and management (DM) and configuration and
planning (CP) interfaces are implemented by providing access
to a temporally specified shared memory, namely the IFS. The
workstation level supports the dynamic selection of a certain
fraction of the IFS, which is of interest to the user of the monitor-
ing application. This part of the shared memory is periodically
transferred at a constant bandwidth.

System Integration (Plug ’n’ Play)
To illustrate the concept of using the IFS for system integration
purposes Figure 8 shows how the user can initiate a scan for new
nodes and how the newly connected nodes can be configured ac-
cording to their transducer electronic datasheets. This approach
is based upon the work presented in [22]. As a consequence
of the user command the master scans for recently added nodes
and automatically assigns a unique node alias (logical name) to
each found node without affecting the real-time services.
In addition to the series and serial number (assigned by the
hardware manufacturer) the alias of the newly connected node
is stored in a record of the IFS providing feedback for the user.
As soon as the alias is assigned the node can be configured
according to its electronic datasheet using master/slave accesses.
The alias is necessary for addressing a particular node during a
master/slave access.

TTP/A
Master

TTP/A Bus

TTP /A
Slave

TTP /A
Slave

TTP /A
Slave

newly
connected

node

File series serial alias

i-1 0xFC4567DA 0xFF113411 0x25

i 0xFF565611 0xAAFF1234 0x17

i+1 ... ... ...

Scan for
nodes

IFS

TTP /A
Slave

newly
connected

node

Figure 8. Dynamic Configuration Example: Plug’n’Play

Dynamic Configuration
Dynamic configuration occurs by performing a parameteriza-
tion of transducer nodes. For example threshold values of an
aging sensor can be altered to compensate for sensor wearout.
Furthermore, the user can modify the TTP/A communication
schedule (RODL files) to accommodate to evolutionary changes
of the system (e. g. integration of additional transducer nodes
into the TTP/A network).

Local Monitoring
The local monitoring module is superior to remote monitoring
applications in terms of temporal predictability. The values of
the interface file system are presented to the user in a graphical
representation. The tool also offers configuration capabilities.
The local monitoring application serves the purpose of visual-
ization of the real-time data. This visualization takes place with
a scalable window of the information space. This approach
to adjust the proper level of detail is called “Pan and Zoom
approach” [23]. Operators are aided in the comprehension of
events on the network. The monitoring functions of testing, de-
bugging, configuration, maintenance and electronic datasheet
extraction are enabled.

Establishment of the Monitoring Requirements
Theprobe effect was eliminated by executing the monitoring
code in TTP/A nodes only during idle times. As a consequence
no modification of the temporal behavior could occur. The de-
termination of the necessary resources for allowing both time
critical real-time operations and monitoring during peak load
scenarios was possible by the a-priori knowledge of the pro-
cessing time required for the execution of the monitoring code.
Determinism was established by mapping all relevant data el-
ements into the interface file system. This eases the monitoring
task significantly. The IFS provides a fully specified interface
in both the value and time domain between the application and
the protocol code of the node. Reading this IFS periodically
enables the system developer to gain insight of the node’s state.
By the provision of a global time in all TTP/A nodes events can
be time stamped. Therefore all conditions causing a certain sys-
tem behavior are observable with respect to their values and the
point in time of monitoring. In contrast to existing monitoring
solutions for fieldbus networks (e. g. [24, 25]) the internal state
of nodes need not be broadcast on the bus to be observable.
Reproducibility was ensured by the properties of the TTP/A
protocol. The time-triggered architecture results in a predefined
execution order of tasks and no need for explicit synchronizing
constructs (e. g. semaphores).

CORBA INTERFACE
The CORBA interface is well suited for configuration and di-
agnostic activities with different hardware platforms, because it
enables interoperability in networks of different machine types
and between programs written in different languages [26]. In
our architecture a CORBA server functions as the server module
(see Figure 4) and realizes the three interfaces (RS, DM, CP):

• Real-Time Service (RS) Interface: By using the RS in-
terface a client is enabled to read or write an observation
out of the memory of the server module. In addition a
client can get information about the instants when the
observations were read from the ST and when the next
observation will be read as well as when the information
will be written to the ST. It allows access to a limited and
pre-configured set of records only but with given temporal
constraints.

• Diagnostic and Management (DM) Interface: In contrast
to the The DM interface is an inherently event-triggered



interface. Accesses via the DM interface cause the re-
trieval of observations from the fieldbus level. Thus, the
DM-Interface is usually used for non-time critical activi-
ties only. It allows reading, writing, and executing every
record of the IFS (even the internal ones).

• Configuration and Planning (CP) Interface: Due to the
similar nature of the DM and CP interfaces (both inter-
faces do not have to provide hard real-time capabilities
and are inherently event-triggered) this interface works in
the same way as the DM interface, but restricts access
to configuration specific records of the IFS (e. g. TDMA-
schedule structures). By controlling visibility and hiding
node internals, complexity is effectively reduced.

CORBA is designed to operate on variety of different network
protocols. Therefore, the described CORBA solution supports
access to the TTP/A smart tranducer network even via wide
area networks. However, due to the indeterministic timing be-
havior of such networks, real-time capabilities strongly depend
on a priori knowledge of the temporal characteristics of these
networks.

CONCLUSION AND FUTURE WORK
This paper has identified essential services and interface re-
quirements of a smart transducer network. We have argued
that three interfaces, namely the real-time service (RS), the
diagnostic and management (DM), and the configuration and
planning (CP) interface proposed in [3], are well-suited for es-
tablishing these services while satisfying the presented interface
requirements. Our case study demonstrates the effectiveness of
the three interfaces. It examines the provision of the required
services and the fulfillment of the interface requirements. The
diagnostic service in the case study fulfills the major monitoring
requirements (elimination of probe effects, determinism, repro-
duciblity) and does not effect the timely exchange of real-time
data (real-time services).

ACKNOWLEDGEMENT
This work was supported in part by the Austrian Ministry of
Science, project TTSB and by the European IST project DSoS
under contract No IST-1999-11585.

REFERENCES
[1] W. H. Ko and C. D. Fung. VLSI and intelligent

transducers. Sensors and Actuators, (2):239–250, 1982.

[2] H. Kopetz, M. Holzmann, and W. Elmenreich. A universal
smart transducer interface: TTP/A. International Journal
of Computer System Science & Engineering, 16(2), March
2001.

[3] Hermann Kopetz. Software engineering for real-time: A
roadmap. Proceedings of the 22nd International Conference
on Future of Software Engineering (FoSE) at ICSE 2000,
4th - 11th June 2000, Limerick, Ireland, Jun. 2000.

[4] H. Kopetz. Real-Time Systems, Design Principles for
Distributed Embedded Applications. Kluwer Academic
Publishers, Boston, Dordrecht, London, 1997.

[5] C. E. McDowell and D. P. Helmbold. Debugging
concurrent programs. ACM Computing Surveys,
21(4):593–622, December 1989.

[6] K. Lee. IEEE 1451: A standard in support of smart
transducer networking. Proceedings of the 17th IEEE,
2:525–528, 2000.

[7] R. Johnson. Building plug-and-play networked smart
transducers. Sensors Magazine, October 1997.

[8] S. E. Chodrow, F. Jahanian, and M. Donner. Run-time
monitoring of real-time systems. In Robert Werner, editor,
Proceedings of the Real-Time Systems Symposium - 1991,
pages 74–83, San Antonio, Texas, USA, December 1991.
IEEE Computer Society Press.

[9] M. Hiller. Error recovery using forced validity assisted by
executable assertions for error detection: An experimental
evaluation. In Proceedings of Euromicro Conference, 1999.,
University of York, York, England, June 1999. IEEE
Computer Society Press.

[10] J. Kramer and J. Magee. Dynamic configuration for
distributed systems. IEEE Transactions on Software
Engineering, SE-11(4):424–436, 1985.

[11] H. Kopetz. In proceedings of the EMSOFT 2001, Tahoe
City California, USA, 8th-10th October 2001.

[12] J. Reason. Human Error. Cambridge University Press, UK,
October 1990.

[13] H. Thane. Monitoring, Testing and Debugging of
Distributed Real-Time Systems. Phd thesis, Mechatronics
Laboratory, Royal Institute of Technology, Stockholm,
Sweden, May 2000.

[14] J. Gait. A probe effect in concurrent programs. Software
Practice and Experience, 16(3):225–233, March 1986.

[15] C. H. Ledoux and D. Stott Parker. Saving traces for Ada
debugging. In Ada in Use (1985 International Ada
Conference), pages 97–108, Cambridge, England, May
1985. Cambridge University Press.

[16] C. Glawan. Monitoring von Echtzeitbetriebssystemen.
Master’s thesis, Technische Universität Wien, Institut für
Technische Informatik, Vienna, Austria, 2000.

[17] M. Mansouri-Samani and M. Sloman. Monitoring
distributed systems. IEEE Network, 7(6):20–30, November
1993.

[18] R. Obermaisser. Design and Implementation of a
Distributed Smart Transducer Network. Master’s thesis,
Technische Universität Wien, Institut für Technische
Informatik, Vienna, Austria, 2001.

[19] P. Peti. Monitoring and Configuration of a TTP/A Cluster
in an Autonomous Mobile Robot. Master’s thesis,
Technische Universität Wien, Institut für Technische
Informatik, Vienna, Austria, 2001.

[20] L. Schneider. Real time Robot Navigation with a Smart
Transducer Network. Master’s thesis, Technische
Universität Wien, Institut für Technische Informatik,
Vienna, Austria, 2001.

[21] H. Kopetz et al. Specification of the TTP/A protocol.
Technical report, Technische Universität Wien, Institut für
Technische Informatik, March 2000. Available at
http://www.ttpforum.org.

[22] Wilfried Elmenreich, Wolfgang Haidinger, Philipp Peti,
and Lukas Schneider. New node integration for
master-slave fieldbus networks. In Proceedings of the 20th
IASTED International Conference on Applied Informatics
(AI 2002), pages 173–178, Feb. 2002.

[23] L. Bartram, A. Ho, J. Dill, and F. Henigman. The
continuous zoom: A constrained fisheye technique for
viewing and navigating large information spaces. In ACM
Symposium on User Interface Software and Technology,
pages 207–215, 1995.

[24] IXXAT, Inc. CANalyzer – new product descriptions. The
Embedded Systems Conference San Francisco, 2001.

[25] A. Rajnak J. Specks. LIN protocol development tools and
software interfaces for local interconnection networks in
vehicles. 9th International Conference on Electronic
Systems for Vehicles, Baden-Baden, 2000.

[26] J. Siegel. CORBA 3: Fundamentals and Programming.
John Wiley and Sons, Heidelberg, 2000.


