
Specification of the TTP/A-Protocol
 V2.00

Author:

Hermann Kopetz et al.
Real-Time Systems Group
University of Technology Vienna

September 2002



   



Table of Contents
1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
1.1 Motivation and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . 1-1

1.2 Structure of this Document. . . . . . . . . . . . . . . . . . . . . . . . . 1-2

2. Smart Transducers Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
2.1 Overview and Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1

2.2 Conceptual Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
2.2.1 Structure of a Smart Transducer System. . . . . . 2-2
2.2.2 The Interface File System. . . . . . . . . . . . . . . . . 2-3
2.2.3 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4
2.2.4 Distinction between Time Triggered and Event 

Triggered systems. . . . . . . . . . . . . . . . . . . . . . . 2-5
2.2.5 Interface Types . . . . . . . . . . . . . . . . . . . . . . . . . 2-6
2.2.6 The Transport Protocol . . . . . . . . . . . . . . . . . . . 2-6
2.2.7 Metadata about a Smart Transducer . . . . . . . . . 2-6
2.2.8 Fault-tolerant Sensor Systems  . . . . . . . . . . . . . 2-7

2.3 File Access Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
2.3.1 File Structure and Naming . . . . . . . . . . . . . . . . 2-8
2.3.2 File Operations . . . . . . . . . . . . . . . . . . . . . . . . . 2-9
2.3.3 Master-Slave (MS) Round  . . . . . . . . . . . . . . . . 2-10
2.3.4 Multi-partner (MP) Round . . . . . . . . . . . . . . . . 2-10
2.3.5 Broadcast Round  . . . . . . . . . . . . . . . . . . . . . . . 2-11
2.3.6 Interleaving of Rounds . . . . . . . . . . . . . . . . . . . 2-11
2.3.7 Data security. . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12
2.3.8 Global Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12

2.4 Smart Transducer Filesystem in the ST . . . . . . . . . . . . . . . 2-14
September 2002 Smart Transducers Adopted Specification i



   
2.4.1 The Round Descriptor Lists (RODLs) 
(file no. 0x00-0x07) . . . . . . . . . . . . . . . . . . . . . 2-14

2.4.2 The Configuration File (file no. 0x08) . . . . . . . 2-15
2.4.3 The Membership File (file no. 0x09)  . . . . . . . . 2-15
2.4.4 The Round Sequence (ROSE) File 

(file no. 0x0A)  . . . . . . . . . . . . . . . . . . . . . . . . . 2-16
2.4.5 The Owner File (file no. 0x0B)  . . . . . . . . . . . . 2-17
2.4.6 The Documentation File (file no. 0x3D). . . . . . 2-17

2.5 The Fireworks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-18

2.6 Description of CORBA Based Object Model and Interfaces 2-18
2.6.1 Representation of Observed Transducer Data. . 2-18
2.6.2 Real-time Service (RS) interfaces  . . . . . . . . . . 2-19
2.6.3 Diagnostic and Management interfaces  . . . . . . 2-19
2.6.4 Configuration and Planning interfaces . . . . . . . 2-19

2.7 Special Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20
2.7.1 Node Identification—Plug and Play . . . . . . . . . 2-20
2.7.2 Baptizing of Nodes . . . . . . . . . . . . . . . . . . . . . . 2-21
2.7.3 Wakeup and Sleep Service . . . . . . . . . . . . . . . . 2-21

2.8 UART Transport Protocol  . . . . . . . . . . . . . . . . . . . . . . . . . 2-22
2.8.1 Bus Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-22
2.8.2 Timing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-22
2.8.3 Start-up Synchronization and 

Re-synchronization. . . . . . . . . . . . . . . . . . . . . . 2-23
2.8.4 Physical Layer  . . . . . . . . . . . . . . . . . . . . . . . . . 2-23

3. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
3.1 Low Cost  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1

3.2 Minimal Jitter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1

3.3 Autonomy of Transducer Subsystems . . . . . . . . . . . . . . . . 3-2

3.4 Architecture Conformance . . . . . . . . . . . . . . . . . . . . . . . . . 3-2
ii Smart Transducers Adopted Specification September 2002



Introduction 1
This document describes the specification of the TTP/A fieldbus protocol. TTP/A stands 
for Time-Triggered Protocol for SAE Class A Applications (TTP/A). The protocol 
specification is part of the standard “Smart Transducers Interface Specification” 
[OMG02] issued by the Object Management Group. 

The OMG document specifies a smart transducers interface and further describes a 
CORBA (Common Object Request Broker Architecture) interface that specifies a 
transparent client/server interaction with a fieldbus from a superordinated network. In 
contrast, this specification will describe the specification of the TTP/A protocol, which 
conforms to the smart transducers interface at fieldbus level. This document will be in 
full compliance with the “Smart Transducers Interface Specification” which is 
recommended for further reading. 

1.1 Motivation and Objectives

A smart transducer (ST) may comprise a hardware or software device consisting of a 
small, compact unit containing a sensor or actuator element (possibly both), a 
microcontroller, a communication controller and the associated software for signal 
conditioning, calibration, diagnostics, and communication. The ST provides the intended 
services across interfaces to its clients. These interfaces are well specified in the value 
domain and in the temporal domain and only make those ST properties visible to the 
client that are required for the proper use of the ST. If the STs are in agreement with this 
specification, these interfaces have the same form and behavior for the wide array of 
differing sensor and actuator nodes in the various engineering disciplines. The internal 
structure and operation of these differing STs remain encapsulated within the ST and are 
not exposed at the interfaces that are accessible from the client. A user of an ST, which 
conforms to this standard, will thus have to cope only with one single generic ST 
interface for the multitude of existing and new sensor types. Many ST systems are 
designed for mass-market applications, where lowest manufacturing costs are absolutely 
essential. Therefore this specification has been designed to minimize the resource 
September 2002 Smart Transducers Adopted Specification 1-1



1

requirements in the STs and thus supports very cost-effective implementations. A 
minimal ST fits into an 8-bit wide processor with on-chip oscillator and a minimum of 
less than 4 kByte of ROM and 64 bytes of RAM storage.

1.2 Structure of this Document

This chapter is organized as follows: Section 2.2, “Conceptual Model,” on page 2-2 
presents the conceptual model that is the base of this specification. Section 2.3, “File 
Access Protocols,” on page 2-8 explains the design of the interface file system (IFS) and 
the file access protocols that are at the core of this specification. Section 2.4, “Smart 
Transducer Filesystem in the ST,” on page 2-14 is devoted to the IFS in the STs, while 
Section 2.5, “The Fireworks,” on page 2-19 describes the required framework. The 
interfaces are described in Section 2.6, “Description of CORBA Based Object Model and 
Interfaces,” on page 2-20. Special system services are treated in Section 2.7, “Special 
Services,” on page 2-21. The UART transport protocol is specified in Section 2.8, 
“UART Transport Protocol,” on page 2-23.
1-2 Smart Transducers Adopted Specification September 2002



Smart Transducers Interface 2
2.1 Overview and Rationale

A smart transducer (ST) may comprise a hardware or software device consisting of a 
small, compact unit containing a sensor or actuator element (possibly both), a micro-
controller, a communication controller and the associated software for signal 
conditioning, calibration, diagnostics, and communication. The ST provides the 
intended services across interfaces to its clients. These interfaces are well specified in 
the value domain and in the temporal domain and only make those ST properties 
visible to the client that are required for the proper use of the ST. If the STs are in 
agreement with this standard proposal, these interfaces have the same form and 
behavior for the wide array of differing sensor and actuator nodes in the various 
engineering disciplines. The internal structure and operation of these differing STs 
remain encapsulated within the ST and are not exposed at the interfaces that are 
accessible from the client. A user of an ST, which conforms to this standard, will thus 
have to cope only with one single generic ST interface for the multitude of existing 
and new sensor types.

Many ST systems are designed for mass-market applications, where lowest 
manufacturing costs are absolutely essential. Therefore this standard has been designed 
to minimize the resource requirements in the STs and thus supports very cost-effective 
implementations fulfilling the mandatory requirements only. A minimal ST fits into an 
8-bit processor with an on-chip oscillator and a minimum of less than 4 kByte of ROM 
and 64 bytes of RAM storage.

Understandability and flexibility have been the driving forces behind this specification. 
The ST interface specification contained in this document provides a flexible 
capability to CORBA to access the real-time service (RS) interface, the diagnostic and 
management (DM) interface, and the configuration and planning (CP) interface of 
small STs in a distributed control system. By standardizing many different interfaces of 
STs, this specification contributes to a simplification of I/O programming and thus to 
software cost reduction of distributed control systems.
September 2002 Smart Transducers Adopted Specification 2-1



2

A distributed control system must support predictable performance in the temporal 
domain. Since many of the standard communication protocols, such as General Inter-
ORB Protocol (GIOP), have not been designed for temporal predictability, this 
specification proposes a new time-triggered transport service within the distributed ST 
subsystem and an encapsulated gateway of this subsystem to the CORBA environment. 

This chapter is organized as follows: Section 2.2 presents the conceptual model that is 
the base of this specification. Section 2.3 explains the design of the interface file 
system (IFS) and the file access protocols that are at the core of this specification. 
Section 2.4, “Smart Transducer Filesystem in the ST,” on page 2-14 is devoted to the 
IFS in the STs, while Section 2.5, “The Fireworks,” on page 2-19 describes the 
required framework. The CORBA interface is described in Section 2.6, “Description of 
CORBA Based Object Model and Interfaces,” on page 2-20. Special system services 
are treated in Section 2.7, “Special Services,” on page 2-21. The UART transport 
protocol is specified in Section 2.8, “UART Transport Protocol,” on page 2-23.

2.2 Conceptual Model

The following sections give a detailed description of the structure and concepts as they 
pertain to a smart transducer cluster.

2.2.1  Structure of a Smart Transducer System

A smart transducer (ST) system that can be accessed from a single CORBA gateway 
interface consists of up to 250 clusters. The master (an ST with extended features) of 
each cluster is connected to the CORBA gateway through a real-time communication 
network, which provides a synchronized time to each master. Each cluster can contain 
up to 250 STs that communicate via a cluster-wide broadcast communication channel. 
One active master controls the communication within one ST cluster (in the following 
sections the term master refers to the active master unless stated otherwise). Since the 
other STs are controlled by the master, we call them slave nodes also. Figure 2-1 
depicts an ST system consisting of three clusters with one master each, and 8 slave 
nodes each. 
2-2 Smart Transducer Adopted Specification September 2002



2

Figure 2-1 Transducer System with 3 clusters

During operation, every ST must have a cluster-unique logical name. Additionally, a 
series number that identifies the type of the transducer must be stored in each 
transducer. In most cases, an ST will also contain a serial number that is unique for 
each transducer type. If it contains a serial number, the concatenation series number 
and serial number determines the unique physical name of an ST that identifies an ST 
uniquely in the universe of STs. This physical name is used when assigning a logical 
name to an ST (this is called the baptizing of the ST and can be performed on line). If 
the plug and play capability is used, every ST in a cluster must have a unique physical 
name. In case there exists more than one ST with the same physical name in a cluster 
the baptize algorithm, which assigns an ST a logical name cannot be successful. (In 
such cases the logical name must be assigned out of system).

Every ST cluster has a master that controls the communication among the STs of a 
cluster. The interconnection between an ST system and the CORBA world is 
accomplished by one or more gateway nodes supporting three encapsulated CORBA 
interfaces: the real-time service (RS) interface, the diagnostic and management (DM) 
interface, and the configuration and planning (CP) interface. It is assumed that every 
ST contains a physical clock for measuring time. If required, the state of clocks in the 
STs can be related to an external time standard, such as GPS time. 

2.2.2 The Interface File System

The information transfer between an ST and its client is achieved by sharing 
information that is contained in an encapsulated ST internal interface file system (IFS), 
as depicted in Figure 2-2. This IFS is at the core of the conceptual model, which is thus 
a data centric model.

Transducer Node 

CORBA-Gateway 

Active 
Master 

Active 
Master 

Active 
Master 

Cluster A Cluster B Cluster C 
September 2002 Smart Transducer Adopted Specification 2-3



2

Figure 2-2 Interface File System in a Smart Transducer

An IFS file is an indexed sequential file with up to 256 records. A record has a fixed 
length of four bytes (32 bits). An IFS record is the smallest addressable unit within an 
ST system. Every record of every IFS file has a unique hierarchical address (which 
also serves as the global name of the record) consisting of the concatenation of the 
cluster name, the logical name, the file name and the record name. Since each name has 
a length of one single byte, the name of a record is thus also four bytes long and fits 
itself into a single record. There are three operations defined on a record: read, write, 
and execute. These operations are described in detail in Section 2.3, “File Access 
Protocols,” on page 2-8.

In very small STs, the IFS can degenerate to a few records of a few files. Such an ST 
will only support a limited functionality for a particular mass-market application. In 
order to become a viable standard for these mass-market applications, this specification 
suggests a set of services, that starts with a very limited minimum service level. This 
minimum service level must be provided by any conforming implementation. If more 
services than these minimum services are provided, this specification defines services 
that can be combined like building blocks in order to design an appropriate ST. If a 
building block is implemented, the ST must provide the full set of services of this 
building block. The specification of further building blocks will be the object of future 
standards. 

2.2.3 Observations

Any property of a relevant state variable that is observed by an ST; for example, the 
temperature of a vessel, is called a state attribute and the corresponding information 
state information. An observation records the state of a state variable at a particular 
instant, the point of observation. An observation can be expressed by the atomic triple:

<Name of the observed state variable, observed value, time of observation>

Example: The following would be an observation: "The temperature of vessel A was 75 
degrees Celsius at 10:42 a.m." This concept of an observation is the essential element 
for understanding the design of this specification. 

Interface
File

System

Write

Read

by ClientInternal Logic of 
Sensor is 

EncapsulatedSensor
Element

 
 

2-4 Smart Transducer Adopted Specification September 2002



2

An observation is an example of a state information data item. State information is 
idempotent and requires an at-least-once semantics when transmitted to a client. At the 
receiver, state information requires an update-in-place and a non-consumable read.

A sudden change of state that occurs at an instant is called an event. Information that 
describes an event is called event information. Event information is not idempotent and 
requires exactly-once semantics when transmitted to a consumer. At the receiver, event 
information must be queued and consumed on reading.

An observation is stored in a record of the IFS within an ST and is normally 
periodically updated by internal encapsulated processes of the ST. The hierarchical 
address (global name) of the selected record denotes the name of the observed state 
variable. The observed value is contained in the record and the time of observation is 
the time of updating the record by the internal process of the ST. If the value of an 
observation is longer than four bytes, then such an observation will be stored in 
multiple records of an IFS file.

In the ST model, the name of the observed state variable, the global name, serves a 
second purpose: it identifies the meta-data about the given ST (at a defined internet 
address outside the ST system) to explain the meaning of the data in the given ST 
implementation. Since STs are very resource constrained, the meta-data for the 
development is cleanly separated from the run-time system and kept in a comfortable 
development system. The series number (part of the physical name) that must be stored 
in every ST establishes the link between an ST type and its description.

At the encapsulated CORBA interface a complete observation; that is, the name of the 
observed state variable (4 bytes), the time of update (8 bytes) the value (4 bytes) and an 
attribute field (4 bytes) is presented in the CORBA interface in at least five consecutive 
four-byte records.

2.2.4 Distinction between Time Triggered and Event Triggered systems

For the reader, who is not familiar with the terms time-triggered and event-triggered, 
we include the following short explanation. A more detailed discussion can be found in 
the text [Kop97].

A trigger is an event that causes the start of some action; for example, the execution of 
a task or the transmission of a message. Depending on the triggering mechanism for 
the start of communication and processing activities in each node of a computer 
system, two distinctly different approaches to the design of real-time computer 
applications can be identified: the event-triggered (ET) and the time-triggered (TT) 
approach. 

In the ET approach, all communication and processing activities are initiated whenever 
a significant change of state; that is, an event other than the regular event of a clock 
tick, is noted. 

In the TT approach, all communication and processing activities are initiated at 
predetermined instants by the progression of time. While ET systems are flexible, TT 
systems are temporally predictable.
September 2002 Smart Transducer Adopted Specification 2-5



2

2.2.5 Interface Types

In the ST model we distinguish between three interface types of an ST, the real-time 
service (RS) interface, the diagnostic and management (DM) interface and the 
configuration and planning (CP) interface. All information that is exchanged across 
these interfaces is stored in files of the IFS. While the real-time service interface is 
time sensitive, the other two interfaces are not time sensitive.

Real-time Service Interface: The real-time service (RS) interface provides time 
sensitive information to its client. This information is normally used for control 
purposes (for example, periodic execution of a control loop), where the quality of 
control is degraded by jitter. Time critical information is therefore delivered 
periodically at the master with small known delay and minimal jitter. The temporally 
predictable real-time service interface is time-triggered. This implies that the jitter is 
determined by the precision of the clock synchronization, which is, even in the lowest 
cost implementations, below 100 µsec. In implementations supporting a higher 
bandwidth this precision can be improved to less than 1 µsec. To minimize the delay, 
the instant of update of the IFS file record that contains the real-time information can 
be synchronized a-priori with the instant of transmission-start of this information. In 
this case, the delay will be reduced to the duration of the interval required for the 
actual transmission.

Diagnostic and Management Interface: The diagnostic and management interface is 
used to monitor the ST, to parameterize the node, and to access the diagnostic 
information inside the ST.

Configuration and Planning Interface: The configuration and planning interface is 
used to configure a generic ST for a new application. This includes assigning a logical 
name to the ST and the assignment of the transmission slots in the time-triggered 
schedule for the real-time service (RS) interface.

2.2.6 The Transport Protocol

The ST system-internal transport protocol supports the time-triggered transport of data 
frames from one ST to all other STs of a cluster (broadcast transport service within a 
cluster). A frame consists of one or more bytes sent by an ST. Since the instant when a 
frame is sent is controlled — either directly or indirectly — by the master, it is assured 
that only one sender will access the communication channel at a particular instant. In 
case the communication is not successful, there is no automatic retransmission. The 
communication system is thus predictable with a known latency and minimal jitter. 
Different transport protocols, such as CAN or LIN, or the wireless IEEE 802.11, can 
be integrated within this standard. For low-cost STs, a single wire UART transport 
protocol that uses an ISO standardized physical layer is specified in Section 2.8, 
“UART Transport Protocol,” on page 2-23.
2-6 Smart Transducer Adopted Specification September 2002



2

2.2.7 Metadata about a Smart Transducer

The structure and the meaning of the data items in the IFS files are only intelligible if 
some metadata about the particular IFS is known. Since an ST has only a very limited 
storage capacity, this metadata describing the semantics of the ST files resides outside 
the ST at a web site associated with each ST type. This metadata can be accessed via a 
register service. The metadata information is essential for the development of 
applications by a "human design process" or by an “automated design process.” In the 
beginning, this metadata will be described by an ad-hoc combination of "structured 
English" and XML metadata tags. If this specification is successful, the standardization 
of these metadata files by the OMG is an urgent topic in order to enable the 
development of effective design support tools. 

The register service for the smart transducer systems has the following functions:

• Establishment of a link to the ST metadata. The series number (part of the 
physical name) in each ST, which indirectly defines the structure and contents of 
the IFS in an ST type, can be used to establish a link to a file at the ST vendor, 
which contains a metadata description of this ST.

• Namespace management of the physical names of STs. To avoid duplication of 
ST's physical names, each vendor is assigned a unique series number for each ST 
type and a defined partition of the namespace to assign unique serial numbers to 
each physical ST.

• Maintain ST yellow pages. The register service maintains a database of STs that 
are available on the open market. By querying this database, a novice user can 
find out which available ST meets his/her requirement and get a pointer to the 
web site of the supplier.

This ST specification provides mechanisms for the "plug and play" capability of ST 
systems (see Section 2.7.1, “Node Identification—Plug and Play,” on page 2-21 and 
Section 2.7.2, “Baptizing of Nodes,” on page 2-22). The master of a cluster can 
periodically query whether a new node has been connected to an existing cluster. Then 
the master can identify the physical name of this new node by executing a binary 
search algorithm. This search is performed simultaneously to the real-time operation of 
the other nodes of the ST cluster. As soon as the physical name of the new node has 
been identified, the master can access, via the register service, the metadata of the 
newly connected ST and can initiate a design process that integrates the new node into 
the running ST system.

2.2.8 Fault-tolerant Sensor Systems

Fault-tolerant ST systems can be constructed by the replication of ST and their 
clusters, and the connection of these replicated clusters to replicated masters that form 
fault-tolerant units. Since real-time applications often have FT mechanisms that are 
based on active replication, no distortion of the temporal properties of the service takes 
place in case of a failure of a unit. Figure 2-3 outlines an example of a fault-tolerant 
ST configuration.
September 2002 Smart Transducer Adopted Specification 2-7



2

Figure 2-3 Fault-Tolerant Sensor Subsystem

A controlled object is observed by a plurality of replicated sensors that are connected 
to two distinct ST clusters. Replicated masters form a fault-tolerant unit with two 
access points controlling these two clusters. The upper master in Figure 2-3 controls 
the upper cluster. In the event that the upper master were to fail, the lower master, 
which would normally act as a standby master for the upper cluster would take control 
of both clusters. The same would apply for the lower master with respect to the lower 
cluster. Such a configuration will tolerate any single failure in any one of its 
constituent components without suffering any degradation of service.

2.3 File Access Protocols

2.3.1  File Structure and Naming

The Interface File System (IFS) is a hierarchical distributed file system that comprises 
a set of up to 64 index-sequential files in each node of the ST system. The structure of 
the IFS corresponds to the structure of the ST system, as outlined in Section 2.2, 
“Conceptual Model,” on page 2-2. An external client can access a record within an ST 
system, by the following structured address:

<cluster name, node name, file name, record name>

Since the ST system is optimized for eight bit node architectures, each name has a 
length of one byte. The maximum size of a distributed IFS is thus 222 files, with 256 
records of four bytes each. If the situation implies a restricted context of an address, 
then the address can be smaller. For example, inside a cluster the cluster name can be 
omitted and within a node, a record can be identified by two fields, the file name and 
the record name. 

ST-M

FT Bus

FT Bus

ST-M

A A A

A A A

Controlled Object

ST Bus

Host

Host

FTU

A               ST node
FT Bus      Fault Tolerant Bus Controller
FTU          Fault-Tolerant Unit
ST-M        ST master controller

Replicated 
Fault Tolerant
Bus

ST Bus
2-8 Smart Transducer Adopted Specification September 2002



2

Some values for the cluster name and the logical node name are reserved for a special 
purpose: 0x00 is reserved for broadcast messages, 251-252 is reserved for future 
extensions, 253 is the gateway, 254 is the master, and 255 is reserved for integrating 
new nodes.

2.3.2 File Operations

The master of a cluster initiates a file operation by transmitting a special one-byte 
frame, called the firework. The firework informs all nodes that a new operation is 
starting and identifies the file-operation.

The file system supports three file operations: read, write, and execute a file record. 
Every file operation must be followed by the global name of the record. The read and 
write operations are executed atomically to read or write the named record. 

When performing an execute operation, the name of the file record serves two 
purposes: 

1. The concatenation of the file-name field (1 byte) and the record-name field (1 byte) 
denote the type of operation that is to be performed.

2. The global record name points to the parameters of this operation, which are 
contained in the named record.

This encoding technique improves the efficiency of operations in low-cost small 
bandwidth systems.

Example: If a temperature-sensor should start a new conversion executing a specific 
record may perform this. As soon as the conversion completes the result will be stored 
in this record.

Since there are only three file operations, the file operations code can be encoded in 
two bits as shown in Table 2-1 on page 2-9.

Since an ST can hold up to 64 files, the file name (6 upper bits) and the file operation 
(2 lower bits) can be fitted into a single byte.

Op Code
Meaning in MP 
Round Meaning in MS Round

00b write from bus to IFS write from bus to slave’s IFS

01b read to bus from IFS read to bus from slave’s IFS

10b write to IFS and sync forbidden

11b execute execute

Table 2-1 Description of OP-Codes
September 2002 Smart Transducer Adopted Specification 2-9



2

In the ST system we distinguish between two kinds of file accesses, called a master-
slave (MS) round, a multi-partner (MP) round. The MS rounds are used to implement 
the diagnostic and management (DM) interface and the configuration and planning 
(CP) interface. The periodic multi-partner (MP) rounds are used to implement the real-
time service (RS) interface. 

For operations that must be executed simultaneously by all nodes of a cluster it is 
possible to use a MS round with a logical name of 0x00 in order to perform a 
broadcast round.

2.3.3 Master-Slave (MS) Round

The master-slave (MS) round is used by the master of a cluster to read data from an 
IFS file record, to write data to an IFS file record, or to execute a selected IFS file 
record within the cluster. 

An MS round consists of two phases, an address phase (MSA) and a data phase 
(MSD). During the address phase the master specifies (in a message to the slave node) 
which type of file operation is intended (read, write, or execute) and the address of the 
selected file record. The message in the address phase consists of the following six 
bytes:

<firework><epoch><logical name><file name | operation><record name><check byte>

Instead of the cluster name (which is required in the global IFS record address but not 
at the cluster level), an epoch counter that contains an identification of the current 
epoch of the cluster internal time base and is incremented each round is provided. In 
the subsequent MSD round the master sends a firework, which indicates that it is either 
transmitting the record data (if a file write operation is performed) or is waiting for the 
slave to transmit the requested record data (if a file read or execute operation is 
performed). The message in the data phase consists of six bytes:

<firework><data byte 0><data byte 1><data byte 2><data byte 3><check byte>

As mentioned before, the implementation must guarantee that the record read and 
record write operations are atomic at the record level. If atomicity is required beyond 
the record level, a concurrency control protocol must be implemented at the 
application level by designating one record as a concurrency control record. In order to 
avoid any delay of the writer, a non-blocking concurrency control protocol should be 
implemented.

The check byte in the MSA-Round and MSD-Round is calculated as a result of an 
exclusive-or operation of the preceding bytes (including the firework). The check byte 
is also used for transmitting inline error codes. In case of an error, all four data bytes 
of the MSD-Round are set to 0xFF and the check byte contains an error code in the 
lower nibble while the bits of the higher nibble are all set. Note that a message 
containing the value 0xFFFFFFFF differs significantly from an error message in the 
check byte.
2-10 Smart Transducer Adopted Specification September 2002



2

Two optional membership vectors (bit fields) are defined (see Section 2.4.3). Every 
time the master receives from an ST a correct response within an MS round it sets the 
corresponding bit of the second membership vector. If none or a wrong answer is 
received, the respective bit is cleared.

If multiple MSA rounds are received the last one is chosen. If multiple MSD rounds 
are received the first one is chosen and the remaining are ignored. Thus the system 
provides additional resistance against unintended operations due to missed MSA or 
MSD rounds.

2.3.4 Multi-Partner (MP) Round

A multi-partner (MP) round is used to implement the real-time service (RS) with 
constant delay and minimal jitter. It is possible to define up to six different MP rounds 
at the same time; for example, to perform fast switches between different modes. MP 
rounds are periodic and optimized for high data efficiency. An MP round consists of a 
firework and subsequent data frames. A data frame is a sequence of one or more bytes 
originating from one ST (master or slave). The sequence of frames of an MP round, 
depicted in Figure 2-4 is described in a round-descriptor list (RODL). The RODL is 
stored in a file of the IFS.

Figure 2-4 Structure of MP rounds

An MP round starts with a firework, sent by the master, followed by a sequence of data 
frames, either from the master or one of the slaves. The firework contains the name of 
the RODL file that must be executed in this round. The RODL file that is stored at the 
slave contains the following information:

1. Which byte numbers after the firework are assigned to this slave.

2. The type of operation (read, or read-synchronize, write, or execute) is requested.

3. Where to get or put these data bytes in the IFS.

The firework, which initiates a round, contains the name of the RODL to be executed. 
It is evident that the schedule described in the RODL referred to by the firework must 
be different in each slave. A global RODL can be considered as a distributed file 
system consisting of all ST-local RODLs.

Since Slot 0 is reserved for the firework and the last slot of a round is reserved for the 
Inter Round Gap (IRG), an MP round may be used to communicate up to 62 data bytes 
because a valid MP round is limited to 64 slots in total.

 

firework byte 1 byte 2 byte 3 

Time 

byte 4 byte 5 

firework frame data frame data frame 
September 2002 Smart Transducer Adopted Specification 2-11



2

The master contains a special file, the ROund-SEquence (ROSE) file. A ROSE file 
contains the specification of the instants for a sequence of consecutively executable 
rounds and a sequence period, which determines after which duration this sequence, 
must be repeated.

Two optional membership vectors (bit fields) are defined (see Section 2.4.3). Every 
time the master receives from an ST a correct response within an MP round it sets the 
corresponding bit of the first membership vector. If none or a wrong answer is 
received, the respective bit is cleared.

The correct response of an ST in an MP round is considered a life-sign of the node. 
Based on this life-sign information, the first membership vector of active STs is 
maintained at the master. The error detection latency of the first membership vector is 
less than two sequence periods. A second membership vector is used to hold life-sign 
information of STs that are not members of the MP rounds currently issued by the 
ROSE file. This second membership vector is therefore updated via MS rounds. The 
error detection latency of this second membership vector is application specific.

2.3.5  Broadcast Round

A broadcast round has the same firework and the same layout as a master-slave round, 
but its address field always contains the logical name 0. The logical name 0 is a 
reserved logical name and addresses all baptized nodes (the logical name is not equal 
to 0xFF) in the cluster. The broadcast round consists also of two parts, but in contrast 
to a usual MS round, the slaves must not send an answer of an execute or read 
command, thus a read command is not feasible. An example for the use of a broadcast 
round is a "sleep command" that puts all nodes of a cluster into the “sleep state”.

2.3.6 Interleaving of Rounds

MP rounds and MS rounds are executed periodically. If there is no request from an 
external client for an MS round pending, the interval between the two MP rounds will 
be used to update the second membership vector. Interleaving diagnostic traffic with 
real-time traffic without disturbing the temporal characteristics of the real-time traffic 
as depicted in Figure 2-5 is recommended.
 

Figure 2-5 Interleaving of MP and MS rounds

It is possible to build a new MP round dynamically while the present MP round 
performs the real-time service. The master writes new configuration data dynamically 
into a new RODL by using MS rounds, and then, after the RODLs in all slave nodes 
have been updated, switches to the newly created RODL in order to execute the new 
MP round.

Multipartner Round Multipartner RoundMaster-Slave Round

Time
2-12 Smart Transducer Adopted Specification September 2002



2

2.3.7 Data security

This specification includes a number of error detection mechanisms that help to detect 
the possible corruption of IFS file data in storage and during transport:

1. On transport, every byte contains a parity bit for error detection. 

2. Every frame of an MS round is protected by a check byte (eight-bit checksum).

3. When designing MP rounds, protected data types can be used if required by the 
application scenario.

4. The data patterns in the firework byte have been carefully designed to provide a 
Hamming distance of 4.

5. An ST node can express the confidence in its sensor reading by assigning a value to 
a confidence marker. This confidence marker is an important input (and output) of 
sensor fusion algorithms.

2.3.8 Global Time

In a distributed transducer subsystem, a global notion of time must be available in 
every node of the system in order to coordinate the actions of the nodes in the temporal 
domain. Since the different nodes can have widely differing hardware characteristics, 
the precision, the granularities, and the horizon of the time representations in the 
differing nodes may vary in order to optimally match the time representation to the 
limited hardware capabilities of the nodes. In this specification we therefore 
distinguish between an external time representation at the CORBA interface and an 
internal time representation within a particular cluster. The master acts as a timeserver, 
transforms the external time representation to the internal time representation and vice 
versa, and provides a reference time for all nodes of a cluster. The master—or the 
CORBA gateway—can also implement an external clock synchronization; for example, 
with a GPS time receiver that provides a global accuracy in the sub microsecond range.

As an external time representation we specify a uniform eight-byte (64 bit) long time 
format based on GPS time, which allows to mark uniquely every instant within the 
time horizon of interest. It has a granularity of 2-24 seconds; that is, about 60 nano-
seconds. This granularity has been chosen because it is possible to synchronize a site 
with a time signal from a GPS receiver within this accuracy. The duration between two 
external clock ticks must be an integer fraction of the physical second in order to 
facilitate the synchronization of the external clock with the GPS clock at the full-
second instants. The external time representation has a horizon of 240 seconds; that is, 
more than 10 000 years and thus will not wrap around in the foreseeable future. The 
epoch starts with the epoch of the GPS time; that is, January 6, 1980. Thus instants 
before January 6, 1980 are expressed as negative values. To express time and date in 
the conventional form, a Gregorian calendar function with the input (and output) of the 
long time representation must be implemented. 
September 2002 Smart Transducer Adopted Specification 2-13



2

The smart transducer system can also be used with free running clocks; that is, without 
a GPS reference. In such a system we use the same external time representation as 
above, but initialize the time with 0 at startup of the CORBA gateway. In such a 
system it is still possible to measure durations, but a relationship of the transducer 
internal instants to an external time-reference cannot be established.

The CORBA gateway is connected to the master of each cluster through a real-time 
communication network, which can transport messages with constant delay and 
minimal jitter. It is thus possible to synchronize the clocks of the masters with the 
CORBA gateway clock. 

In order to economize on the representation of the continuously flowing time in the 
slaves, only an interval of time around the current time “now”, can be expressed in the 
slaves in the internal time representation. This is in agreement with the strategy to 
reduce the memory requirement of a slave as far as possible. The epoch of the time 
scale at a slave (internal time representation) begins with the instant of the start of a 
firework. Every time a new round (MP, MSA, or MSD round) is started the 8-bit epoch 
counter is incremented by one. Thus each slave can distinguish between 256 
consecutive epochs. In order to allow a slave to (re)integrate to the system the master 
transmits its 8-bit epoch-counter with each MSA round. This 8-bit epoch counter 
replaces the cluster name in the MS address round which is not needed any more at the 
addressed master. 

The translation of the slave internal time representations of the transducer subsystem to 
the external time representation is in the responsibility of the master node. During the 
transmission of the data frames within a round, the slaves are periodically 
resynchronized with the reception of data bytes from a node with a trusted time base. 
The "trusted-time-base" slots of a multi-partner round are marked as "read 
synchronize" slots in the corresponding RODL. The integration and periodic 
resynchronization of local clocks of slaves with a maximum frequency deviation within 
50% of the nominal frequency and a drift rate of up to 10-1 sec/sec is thus supported.

2.4 Smart Transducer Filesystem in the ST

The Interface File System (IFS) provides the common encapsulated addressing space 
for the exchange of information within a set of ST clusters and between a set of ST 
clusters and the CORBA gateway. The IFS of a single ST comprises 64 files of up to 
256 four-byte records each. Except for a minimal documentation file, an ST must 
implement only those files that are required for its purpose.

The first record (rec. no. 0x00) of each file is the Header record, which contains file 
specific information.
2-14 Smart Transducer Adopted Specification September 2002



2

Figure 2-6 Addressing Space

RO:    read-only bit. If set file is read-only.

Stat:    01b         file ok.

         otherwise  filedamaged

If a file is not implemented there is no need to implement the respective header record; 
the "NoFile"-error is returned instead. Unimplemented records in the middle of a file 
should return 0x00 in order to prevent holes in the IFS (the "NoRecord"-error is 
applicable for records beyond the length of a file only).

Two initial states are very likely in a memory element: all bits set or all bits cleared. 
Since a correct file header must contain at least one set bit and one cleared bit (in the 
stat field) such an initial state is recognized as a damaged file.

The namespace for files is subdivided into two parts:

System Files (file no. 0x00-0x0F and file no. 0x38-0x3F)

Application Specific Files (file no. 0x10-0x37)

The System Files are dedicated to special tasks that are further described in the 
following sections (system files not covered in these sections are reserved for future 
extensions). All the remaining files are Application Specific Files and may be freely 
used in any desired manner as long as the first record (rec. no. 0x00) contains the 
header record as specified above in order to be conformant to this specification.

2.4.1 The Round Descriptor Lists (RODLs) (file no. 0x00-0x07)

An ST can only participate in a multi-partner (MP) round if the ST has the information 
about the structure of this MP round stored in one of its six RODLs. Each RODL file 
contains the ST-local description of one MP round. The numbers of the RODL files are 
0x00, 0x02, 0x03, 0x04, 0x06 and 0x07 (see Table 2-2 on page 2-20).

RODL 0x01 and 0x05 are reserved as internal buffer for implementing the MSD and 
MSA round.

For a detailed description of the internal RODL format see [EHKLOT02].

 
Header 

reserved Stat R
O

 
File Length -1 For file OS For file OS 

M
SB

 

L
SB

 

M
SB

 

L
SB

 

M
SB

 

L
SB

 

M
SB

 

L
SB

 

Byte 0 1 2 3 
September 2002 Smart Transducer Adopted Specification 2-15



2

2.4.2 The Configuration File (file no. 0x08)

The system file number 0x08 (Configuration File) contains the current logical name, 
the Identifier Compare Value (IDCV) and the sleep record. It is necessary for each ST 
node (master and slave) that supports plug and play or the sleep function. The layout of 
the Configuration File (0x08) is depicted below.

Figure 2-7 Layout of Configuration File

CCN: is the Currently assigned Cluster Name.

CLN: is the Currently assigned Logical Name.

NLN: is the New Logical Name used by the baptize algorithm.

IDCV: (optional) is needed by the baptize algorithm and stores the ID Compare Value.

STAT: is the current Status of the node.

CRND: is the number of the current round.

ECTR: is the current value of the Epoch-Counter.

SCTR: is the current value of the Slot-Counter.

2.4.3 The Membership File (file no. 0x09)

The Membership File contains two membership vectors of 256 bits (32 byte) each. The 
logical name of the ST is interpreted as an index to the 256 membership bits of the 
membership vector. The first membership vector contains all slaves that have sent a life-
sign during the last sequence period. The second membership vector contains all slaves, 
which have responded correctly to the most recent MS operation (read or execute). 

If there is no pending request by an external client, the master fills the empty MS slots 
by issuing a read operation to an ST. Eventually the master will have sent read 
operations to all addresses in the (logical) name space in order to update the second 
membership vector. Since the second membership vector is updated sporadically no 
guarantee about temporal accuracy of the second membership vector can be given. 
Refer to Figure 2-8.

 
Sleep  IDCV Header 

Record 
Byte 

0x01 
0 3 

0x02 0x03 0x04 
0 0 0 3 3 3 

M
SB

 

L
SB

 

0x05 
0 3 

 

C
L

N
 

N
L

N
 

C
C

N
 

SC
T

R
 

E
C

T
R

 

C
R

N
D

 

ST
A

T
 

2-16 Smart Transducer Adopted Specification September 2002



2

Figure 2-8 The Membership File

Example: The logical name 0x1F is assigned to the MSB (bit number 31) of record 
0x08 for the first membership vector (respectively 0x10 in the second membership 
vector). If the respective bit is set, the node has been active in the last sequence period. 

2.4.4 The Round Sequence (ROSE) File (file no. 0x0A)

A ROSE file makes sense for the master only and contains the specification of the start 
instants of a sequence of sequentially executable rounds and a sequence period, which 
determines after which duration this sequence must be repeated. The ROSE file 
consists of three sections. The first section is the status record. The second and third 
section each contain a sequence of MP round names. At any instant in time exactly one 
of the second or third section is active, while the other one is inactive. Modifications of 
the active section of the ROSE file are forbidden.

The Status record (0x01) describes which section of the ROSE file is currently active. 
It also contains the length of the second (and third) section of the ROSE file. Refer to 
Figure 2-9.

Figure 2-9 Status Record

 F irs t M em b ersh ip  

V ec to r 

R eco rd  
B yte  

0 x 0 1  
0  3  

0 x 0 2  0 x 0 3  0 x 0 4  
0  0  0  3  3  3  

0 x 0 5  0 x 0 6  
3  3  0  0  

0 x 0 7  0 x 0 8  
3  3  0  0  

M
SB

 

L
S

B
 

S e co n d  M em b ersh ip  

V ec to r 

0 x 0 D  0 x 0 E  
3  3  0  0  

0 x 0 F  0 x 1 0  
3  3  0  0  

L
SB

 

0 x 0 9  0 x 0 A  
3  3  0  0  

0 x 0 B  0 x 0 C  
3  3  0  0  

M
SB

 

H e a d e r 

 
Status Header 

Record 
Byte 

0x01 
0 3 
September 2002 Smart Transducer Adopted Specification 2-17



2

Byte 0:     0 section two is active.
   1 section three is active.
Byte 1:     start record of section two 
Byte 2:     start record of section three

Section two of the ROSE file has the following format:

Figure 2-10 Section Two of ROSE File

This section contains the instant when the sequence should be started (start time) and 
the sequence-period (period).

Byte 0 of every following record contains in the three LSBs the name of the round to 
be issued. A set MSB of byte 0 signal that this is the last entry of a round-sequence. 
This end-of-round (EOR) bit must be cleared for all entries except the last.

Byte 1 contains the length of the inter-round gap (IRG). The IRG must be a positive 
integer multiple of one slot (13 bit cells) duration. Valid entries are 0x01, 0x02, …, 
0x0F, referring to an IRG of the length of one slot, two slots, …, up to 15 slots.

The first entry must be an MSA entry (0x05, round number 5). All bits not specified 
above must be set to 0. Further every MSA round must have a complementary MSD 
round.

To change the active part of the ROSE file the address of the Status record (0x01) has 
to be part of an execute command. After finishing the current round sequence the 
master reads the other section of the ROSE file to do the new schedule.

2.4.5 The Owner File (file no. 0x0B)

The Owner File contains the “owner” (the logical name of the node which is allowed 
to write to the bus) of each slot of each round. This file must be consistent with the 
RODL files.

Rec. no. 0x01 and 0x02 are used as index containing the record no. of the first entry of 
each round. The remaining records contain a list of the logical names of the sending 
nodes of the respective round. The first entry of a round must always be in byte 0x00 
of a record. See Figure 2-12.

The entry in the index for the MSA and MSD round (IndexA and IndexD) is unused 
but has been left in the index in order to allow consistent address calculations. These 
entries should be initialized with 0x00.

 
Round No. Round No. Period Start Time 

L
SB

 

0x02 0x03 0x04 
0 0 0 3 3 3 

M
SB

 
L

SB
 

M
SB

 

0x05 0x06 
3 3 0 0 

0x07 
3 0 
2-18 Smart Transducer Adopted Specification September 2002



2

Figure 2-11 The Owner File 

Unused slots are assigned to the logical name 0x00 which is reserved for broadcast and 
thus is not a valid logical name for an ST.

Since slot 0 is used for the fireworks byte the owner of slot 0 of each round is the 
master of the cluster.

2.4.6 The Documentation File (file no. 0x3D)

Every ST must contain at least the first, second, and third (0x00, 0x01, and 0x02) 
record of the documentation file 0x3D. This file is a read only file and contains the 
physical name, an eight-byte (64 bit) integer in record 0x01 and 0x02. The MSB is 
stored in the first byte. See Figure 2-12.

Figure 2-12 The Documentation File 

With this information it is possible for the client to identify an ST and to access the 
documentation about the ST from the Internet. Implementations have the freedom to 
provide in the remaining records of the documentation file read-only documentation of 
this ST.

2.5 The Fireworks

The firework initiates the start of a round. The list of firework is depicted in Table 2-2. 
The fireworks (protected by a parity bit) have a Hamming distance of at least 4. To be 
able to distinguish between a firework and a normal data byte the parity for the 
fireworks have to be odd, while for normal data bytes even parity is used.

 
…   Header 

Record 
Byte 

0x01 
0 3 

0x02 0x03 0x04 
0 0 0 3 3 3 

Sl
ot

3 

... 
0 3 

 

In
de

x3
 

In
de

x2
 

In
de

xD
 

In
de

x0
 

Sl
ot

0 

Sl
ot

1 

Sl
ot

2 

In
de

x4
 

In
de

xA
 

In
de

x6
 

In
de

x7
 

Sl
ot

4 

Sl
ot

5 

Sl
ot

6 

Sl
ot

7 

 
ID 

M
SB

 

L
SB

 

Header 

Record 
Byte 

0x01 
0 3 

0x02 
0 3 
September 2002 Smart Transducer Adopted Specification 2-19



2

The MSA firework has been designed to generate a regular bit pattern for the start-up 
synchronization of ST nodes that contain an imprecise on-chip oscillator. 

2.6 Description of CORBA Based Object Model and Interfaces

2.6.1 Representation of Observed Transducer Data

In the proposed CORBA-gateway each RT observation (see Section 2.2.3) is 
represented by a structure consisting of 4 fields. For further details see [OMG02].

Finally, the fourth field contains the value of the RT entity. Normally, the fourth field 
will be 4 bytes long. If the value of an RT entity is longer, the value field will be 
extended accordingly to the application specific requirements.

2.6.2 Real-time Service (RS) Interface

The real-time service (RS) interface contains the RT images of the time-critical state 
variables of the ST system. 

On input from the ST nodes to the CORBA gateway, these RT images (sensor values) 
are continuously updated from the addressed ST file records by the periodic MP 
rounds at a-priori known instants determined by the active ROSE/RODL files. Since 
the data at the RS interface is state data, a new version of a sensor value overwrites the 
old version. Fresh state data with known temporal characteristics is thus always 
available at the CORBA gateway and can be accessed by a CORBA method without 
any delay.

On output, the set-points for the actuators are periodically fetched at time instants 
computed a-priori and determined by the active ROSE/RODL file from the CORBA 
gateway and delivered to the addressed ST file record. Again stateful data semantics 
are assumed, viz., the available data value is not consumed on access. The real-time 
communication system that transports the RT observations is characterized by small 

firework Meaning Description

0x78 RODL=0 multi-partner round 0

0x49 MSD Master-Slave-Data

0xBA RODL=2 multi-partner round 2

0x8B RODL=3 multi-partner round 3

0x64 RODL=4 multi-partner round 4

0x55 MSA Master-Slave-Address - Synchronize Round

0xA6 RODL=6 multi-partner round 6

0x97 RODL=7 multi-partner round 7

Table 2-2 Description of Firework-Bytes
2-20 Smart Transducer Adopted Specification September 2002



2

known delay and by a minimal jitter. Since the jitter is tightly controlled in the RS 
interface, the data can be used for time-sensitive real-time services; for example, 
distributed control loops.

2.6.3 Diagnostic and Management Interface

The diagnostic and management (DM) interface accesses application specific 
diagnostic and calibration data that is stored in application files at the ST nodes via 
master-slave (MS) rounds. Since in general the transport timing of MS rounds cannot 
be guaranteed, the DM interface should not be used for time-sensitive control data.

The representation of file specific information at the CORBA DM interface is the same 
as the representation of observations at the RS interface, as described above. Again 
data is treated as “state data”; that is, the contents of a new round overwrite the 
contents of the previous round.

2.6.4 Configuration and Planning Interface

The configuration and planning (CP) interface accesses the configuration data stored in 
the RODL files of the slaves and the ROSE file of the master by MS rounds.

The internal format of the RODL file (see [EHKLOT02]) is specific to an ST type and 
should be generated for a particular ST by an RODL generation tool from the abstract 
RODL specification.

2.7 Special Services

2.7.1 Node Identification—Plug and Play

Each node has a universally unique physical name, stored in the second and third (0x01 
and 0x02) record of the documentation file. During operation, a node is not addressed 
by this unique physical name, but by a cluster unique 8-bit (one byte) logical name that 
is a shorter alias of the ST within a cluster. Additionally there are two logical names set 
aside for group addressing: the logical name 0x00 is reserved to address all STs of a 
cluster and the logical name 0xFF is reserved for addressing all unbaptized STs of a 
cluster. A node, newly connected to an ST cluster, must have either an a-priori 
assigned logical name or the special logical name 0xFF, which marks it as an 
unbaptized node. If the unique physical name of a new node is known, then a baptize 
operation; that is, the assignment of a logical name to this ST, can be started 
immediately, otherwise, the unique physical name must be retrieved by a special search 
algorithm. Node identification is an optional service.

If there are many unbaptized nodes connected to an ST cluster they all have the same 
logical name 0xFF at startup. Thus it is impossible to address exactly one unbaptized 
node by an MS round. In general, reading from multiple nodes via MS rounds is 
impossible. A special execute command to 0xFF will cause all unbaptized nodes to 
respond and thus inform the listener only about the existence of unbaptized nodes in 
the cluster. It is however possible to write to and execute at multiple nodes due to the 
September 2002 Smart Transducer Adopted Specification 2-21



2

broadcast capability of the network. The two operations (write and execute) suffice to 
retrieve the physical names of the unbaptized nodes and thus solve the node 
identification problem.

The node identification uses a binary search algorithm over the entire code space of the 
unique node ids. It proceeds as follows:

1. An eight-byte Identifier Compare Value (IDCV) is written into system file 
"configuration" (0x08) of the IFS at each node with logical name 0xFF by a 
“broadcast” write.

2. A special record of system file "configuration" (0x08) is executed at all nodes with 
logical name 0xFF to compare its unique physical name with the IDCV.

3. Unbaptized Nodes with a unique physical name greater or equal to the IDCV 
respond, all other nodes stay silent.

4. As long as there exist some answering nodes the IDCV is raised and the algorithm 
is repeated. If no node answers, the IDCV must be lowered and the algorithm 
repeated.

This algorithm is repeated until exactly one IDCV is identified as an existing physical 
name.

An ST supporting the baptize feature must support an execute command to the first 
record of the IDCV (file: 0x08, record: 0x02). Executing this record the IDCV and the 
physical name (file: 0x3D, records: 0x01-0x02) is compared. If the physical name is 
greater or equal to the number stored in IDCV the node replies in the following master-
slave-data (MSD) round with a single zero byte (the remaining slots of the MSD round 
remain empty), otherwise no answer is generated.

2.7.2  Baptizing of Nodes

If the physical name and the logical name are known, the baptizing operation proceeds 
as follows. The master writes (with a "broadcast" logical name 0xFF of the MS round) 
the new logical name and the physical name into special records of the system file 
"configuration" (0x08) of all nodes, which have not yet been baptized. It then performs 
an execute command on record (file: 0x08; rec: 0x01), which assigns the new logical 
name only to the node that has the same physical name in the documentation file as the 
physical name that has been previously written into the system file "configuration" 
(file: 0x08; rec: 0x02-0x03).

For baptizing, record number 0x01 of system file "configuration" (0x08) must have an 
execute operation assigned. Executing this record the New Logical Name (NLN) 
replaces the logical name if the IDCV (file: 0x08, record: 0x02-0x03) matches the 
physical name (file: 0x3D, records: 0x01-0x02).

The logical name 0xFF means that an ST is currently not integrated in the system. 
Such an ST must not answer any MS or MP request except the two MS-execute 
commands required for the baptize algorithm (MS-execute of file: 0x08, record: 0x01 
and MS-execute of file: 0x08, record: 0x02). MS-write operations have to be 
performed without respect to the logical name.
2-22 Smart Transducer Adopted Specification September 2002



2

Extremely low-cost nodes produced in large quantities for a particular application (e.g., 
in consumer electronics, or automotive applications) may not include the functionality 
for baptizing. These nodes may have an a-priori assigned logical name. This can be 
done outside the system context (e.g., during manufacturing). Since all logical names 
of an ST cluster must be different, only one node with a particular hard-coded logical 
name may be part of an ST cluster.

2.7.3 Wakeup and Sleep Service

A node can be forced into sleep mode by executing a special record in the system file 
"configuration" (0x08) of the IFS. Since each node can be accessed by the broadcast 
logical name (0x00) it is possible to force the entire ST cluster into sleep mode with a 
single sleep command. During sleep, a node is in a save-power state and has only very 
limited functional capabilities. In the sleep state, there is no activity on the bus. 
Wakeup occurs if a sleeping node detects activity on the bus or is woken up by a node 
specific local event.

Executing the Sleep record (file: 0x08, record: 0x05) sends the node to sleep mode. 

Since a slave node is not resynchronized while sleeping, the master has to be aware 
that the clock of a node that just woke up may be unsynchronized. After receiving a 
wake up signal on the bus the master initiates an MSA round to synchronize and wake 
up all nodes within the cluster.

2.8 UART Transport Protocol

The predictable ST transport service can be implemented by a byte oriented UART 
protocol on a broadcast communication channel. Any communication is initiated by 
sending a firework from the master according to the time-triggered schedule stored in 
the active ROSE file. There are no collisions on the communication channel.

2.8.1 Bus Access

Whenever the time reaches an instant stored in the active ROSE file of a master, it will 
output the specified firework on the communication channel. In the UART protocol, a 
slot for the transmission of one byte has a length of 13 bits, composed as follows: 

<start bit; eight data bits; parity bit; stop bit; inter-frame gap of two bits>

All bytes sent by the master must start precisely at the a-priori specified instants (start-
instant of the round plus an amount - bytecount x bitduration x 13). 

In the UART implementation, the rounds have the following structure:

Master Slave Address (MSA) round (six bytes):

<firework, epoch, logical name, file-name and command, record name, check byte>

The check byte is calculated by an exclusive OR over the first five bytes of the MSA 
round.
September 2002 Smart Transducer Adopted Specification 2-23



2

Master Slave Data (MSD) round (six bytes):

<firework, data byte 1, data byte 2, data byte 3, data byte 4, check byte>

Byte 0 (the most significant byte) of the record is transmitted first. The check byte is 
calculated by an exclusive OR over the first five bytes of the MSD round.

Multi-partner round (up to 64 bytes, according to RODL specification):

<firework for selected RODL, data byte 1, data byte 2, . . . data byte n>

2.8.2 Timing

Whenever the master sends a firework for a new round, a new epoch is started at the 
slaves. The starting instant of this new epoch is the first (falling) edge of the start-bit 
of the firework. In an MSA round the master provides the number of the current epoch 
in the byte following the firework. The slave measure time by counting the slots (or 
fractions thereof) after the epoch (internal time representation).

The sequence of rounds between the start instant of an MSA round and the start instant 
of the next MSA round is the period of the schedule contained in the RODL file. The 
duration of the inter-round gap between the last round of a period and the first round of 
the next period may be used to synchronize the start of the next MSA round with the 
external time (variant slack). All other inter-round gaps within a period must last a 
positive integer-multiple of precisely 13 bit lengths.

Since the maximum length of a MP round is 78 slots (fireworks plus up to 62 data 
bytes plus up to 15 slots for Inter Round Gap) and the slot counter is reset to 0x00 with 
the beginning of each epoch (at the beginning of each round), the slot counter easily 
fits into an 8 bit register. Thus the pair epoch counter and slot counter may be used as 
timestamp on ST level. Since every cluster can have differing transmission speeds (and 
time formats) the master must transform the internal time representation to the external 
time representation.

2.8.3  Start-up Synchronization and Re-synchronization

A node with an imprecise oscillator (e.g., RC on chip oscillator) must adjust its clock 
after startup and periodic during operation. For this purposes the firework 0x55 was 
chosen to be the fireworks of the MSA round. This firework has a very regular bit 
pattern. Further a read-synchronize command is defined during MP rounds. This 
command can be used to resynchronize the node's clock on reading a message 
originating from a node with a highly reliable oscillator.

2.8.4 Physical Layer

The UART protocol can be based on different physical layers. The two major 
requirements are:

• It must be possible to transport UART messages via the bus.
2-24 Smart Transducer Adopted Specification September 2002



2

• In the case where a baptize service is available, concurrent write operations (all slaves write 
the same value at almost the same instant) to the bus must be supported and the master must 
be able to detect in such a case that there is some traffic on the bus. It is not a requirement 
that the master can read this data correctly.

For example, the ISO9141 (ISO K Line), the RS485 and several other bus standards 
fulfill these requirements.
September 2002 Smart Transducer Adopted Specification 2-25



2

2-26 Smart Transducer Adopted Specification September 2002



Conclusion 1
The TTP/A protocol has been designed to meet the following requirements:

1.1 Low Cost

A field bus will only be accepted in the market place, if its introduction reduces the 
overall system cost and, at the same time, increases the system dependability. The TTP/A 
field bus provides the following potentials for cost reduction at the system level:

Software cost: Standardized interfaces between system nodes and transducer nodes will 
lead to a significant cost reduction in the development process. The validation effort for 
the implementation of new applications will also decrease.

Transducer nodes: The TTP/A field bus is based on an universal asynchronous receiver 
transmitter (UART). This is a widely available component of the shelf (COTS) interface 
standard. Nearly all low-cost microcontrollers that are available on the market can be 
used as transducer nodes. The UART can be implemented either in hardware or in 
software.

System nodes: Special I/O interfaces of the system nodes are replaced by a UART. This 
reduces the pin count of a system node and makes a particular system node design more 
versatile.

Cabling: Since point-to-point cabling between the controller and each sensor 
(respectively actuator) is replaced by a bus where all the transducers and system nodes 
are plugged in, the wire length and the number of cabling connections is remarkably 
reduced.

1.2 Minimal Jitter

TTP/A provides deterministic communication with minimal and a priori known jitter. 
This increases the quality of control in control loops that are closed via the TTP/A field 
bus.
September 2002 Smart Transducers Adopted Specification 1-1



1

1.3 Autonomy of Transducer Subsystems

A TTP/A fieldbus subsystem operates autonomously and does not require any host CPU 
services for its operation. This autonomy of the field-bus subsystem reduces the 
complexity and simplifies the certification at the system level.

1.4 Architecture Conformance

From the point of view of system nodes, the interface to transducers connected, via the 
TTP/A field bus, is identical to remote transducers, which are relayed by the Time-
Triggered Protocol for Class C Applications (TTP/C) from another system node. This 
unification of interfaces simplifies the system wide sharing of sensor information.

To our knowledge, none of the widely discussed field-bus protocols meets all of the 
above requirements. Since the smart transducers interface provided by TTP/A conforms 
to a world-wide standard it can be considered an interesting option for various sensor 
network applications. The interface provides many features that are required by fieldbus 
applications for automotive or automation industries. Supported features are the real-time 
capability, the encapsulation of the node's internals, and a universal address space with 
the interface file system. TTP/A can be implemented on low-cost Commercial-off-the-
Shelf (COTS) hardware and supports various bus media types.
1-2 Smart Transducers Adopted Specification September 2002



References 2
[OMG02] OMG. Smart Transducers Interface. Specification ptc/2002-05-01, Object Management Group, May 2002. 
Available at http://www.omg.org.

[Kop97] Hermann Kopetz. Real-Time Systems, Design Principles for Distributed Embedded Aplications. Boston, Kluwer 
Academic Press, 1997.

[EHKLOT02] Wilfried Elmenreich, Wolfgang Haidinger, Raimund Kirner, Thomas Losert, Roman Obermaisser, Christian 
Trödhandl. TTP/A Smart Transducer Programming - A Beginner's Guide. Research Report 33/2002, Institut für 
Technische Informatik, Technische Universität Wien, Vienna, Austria, 2002.
September 2002 Smart Transducers Adopted Specification 2-1



2

2-2 Smart Transducers Adopted Specification September 2002


	1. Introduction 1-1
	2. Smart Transducers Interface 2-1
	2.2.1 Structure of a Smart Transducer System 2-2
	2.2.2 The Interface File System 2-3
	2.2.3 Observations 2-4
	2.2.4 Distinction between Time Triggered and Event Triggered systems 2-5
	2.2.5 Interface Types 2-6
	2.2.6 The Transport Protocol 2-6
	2.2.7 Metadata about a Smart Transducer 2-6
	2.2.8 Fault-tolerant Sensor Systems 2-7
	2.3.1 File Structure and Naming 2-8
	2.3.2 File Operations 2-9
	2.3.3 Master-Slave (MS) Round 2-10
	2.3.4 Multi-partner (MP) Round 2-10
	2.3.5 Broadcast Round 2-11
	2.3.6 Interleaving of Rounds 2-11
	2.3.7 Data security 2-12
	2.3.8 Global Time 2-12
	2.4.1 The Round Descriptor Lists (RODLs) (file no. 0x00-0x07) 2-14
	2.4.2 The Configuration File (file no. 0x08) 2-15
	2.4.3 The Membership File (file no. 0x09) 2-15
	2.4.4 The Round Sequence (ROSE) File (file no. 0x0A) 2-16
	2.4.5 The Owner File (file no. 0x0B) 2-17
	2.4.6 The Documentation File (file no. 0x3D) 2-17
	2.6.1 Representation of Observed Transducer Data 2-18
	2.6.2 Real-time Service (RS) interfaces 2-19
	2.6.3 Diagnostic and Management interfaces 2-19
	2.6.4 Configuration and Planning interfaces 2-19
	2.7.1 Node Identification—Plug and Play 2-20
	2.7.2 Baptizing of Nodes 2-21
	2.7.3 Wakeup and Sleep Service 2-21
	2.8.1 Bus Access 2-22
	2.8.2 Timing 2-22
	2.8.3 Start-up Synchronization and Re-synchronization 2-23
	2.8.4 Physical Layer 2-23

	3. Conclusion 3-1
	Introduction
	1.1 Motivation and Objectives
	1.2 Structure of this Document

	Smart Transducers Interface
	2.1 Overview and Rationale
	2.2 Conceptual Model
	2.2.1 Structure of a Smart Transducer System
	2.2.2 The Interface File System
	2.2.3 Observations
	2.2.4 Distinction between Time Triggered and Event Triggered systems
	2.2.5 Interface Types
	2.2.6 The Transport Protocol
	2.2.7 Metadata about a Smart Transducer
	2.2.8 Fault-tolerant Sensor Systems

	2.3 File Access Protocols
	2.3.1 File Structure and Naming
	2.3.2 File Operations
	2.3.3 Master-Slave (MS) Round
	2.3.4 Multi-Partner (MP) Round
	2.3.5 Broadcast Round
	2.3.6 Interleaving of Rounds
	2.3.7 Data security
	2.3.8 Global Time

	2.4 Smart Transducer Filesystem in the ST
	2.4.1 The Round Descriptor Lists (RODLs) (file no. 0x00-0x07)
	2.4.2 The Configuration File (file no. 0x08)
	2.4.3 The Membership File (file no. 0x09)
	2.4.4 The Round Sequence (ROSE) File (file no. 0x0A)
	2.4.5 The Owner File (file no. 0x0B)
	2.4.6 The Documentation File (file no. 0x3D)

	2.5 The Fireworks
	2.6 Description of CORBA Based Object Model and Interfaces
	2.6.1 Representation of Observed Transducer Data
	2.6.2 Real-time Service (RS) Interface
	2.6.3 Diagnostic and Management Interface
	2.6.4 Configuration and Planning Interface

	2.7 Special Services
	2.7.1 Node Identification—Plug and Play
	2.7.2 Baptizing of Nodes
	2.7.3 Wakeup and Sleep Service

	2.8 UART Transport Protocol
	2.8.1 Bus Access
	2.8.2 Timing
	2.8.3 Start-up Synchronization and Re-synchronization
	2.8.4 Physical Layer


	Conclusion
	1.1 Low Cost
	1.2 Minimal Jitter
	1.3 Autonomy of Transducer Subsystems
	1.4 Architecture Conformance

	References

