
Fixed Point Library Based on ISO/IEC Standard
DTR 18037 for Atmel AVR Microcontrollers

Wilfried Elmenreich1, Maximilian Rosenblattl2, and Andreas Wolf2

1Institut für Technische Informatik,
Vienna University of Technology, Vienna, Austria

wil@vmars.tuwien.ac.at

2Students,
Vienna University of Technology, Vienna, Austria

{e0325880,e0325330}@student.tuwien.ac.at

Abstract — The ISO/IEC Standard DTR 18037 defines the syntax and semantics
for fixed point operations for programming embedded hardware in C. However, there
are currently only few compilers available that support this standard. Therefore,
we have implemented a stand-alone library according to the standard that can be
compiled with standard C compilers. The library is available as open source and
written in plain C, thus can be used in various target architectures as long as a C
compiler is available.
This paper presents a brief description of the ISO/IEC standard and the library im-
plementation followed by an evaluation of code size and performance of the fixed
point operations on the Atmel AVR architecture. A comparison with the standard
floating point library (which is machine code-optimized to the target architecture)
shows that simple fixed point functions such as addition, subtraction and multipli-
cation are more efficient, while more complicate functions can only compete in the
worst case behavior. The fixed point approach provides a smaller memory foot print,
for typical applications where only a small subset of functions is used. This is es-
pecially of interest for the big market of embedded microcontrollers with only a few
Kbytes of program memory.

1 Introduction
On systems without an optimized hardware module, floating point operations have be
emulated by a series of integer operations in software. Although this is usually done by
the compiler, using floating point arithmetic still affects the performance.

Since the regular integration of the floating point coprocessor in the processors for per-
sonal computers (in the x86 world, this became reality when the 486DX replaced the
486SX in 1992), floating point arithmetic was available with high performance and be-
came a ubiquitous feature for computer programs.

gymi
Text Box
This is the author's version of the work. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purpose or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained. The definite version was presented at Fifth International Workshop on Intelligent Solutions in Embedded Systems (WISES'07), pages 101–113, Madrid, Spain, 2007.

ELMENREICH, ROSENBLATTL, WOLF

Floating point numbers comes with some advantages for the programmer [1]: (i) they
approximate real numbers over a relatively wide data range, (ii) they provide a constant
relative precision, (iii) the number format is standardized by IEEE 754 as 32bit single
precision and 64 bit double precision numbers.

However, for embedded systems, in many cases a processor design with plain integer
arithmetic is used, since the die size and, therefore, the cost of an microcontroller is
strongly increased when a floating point unit has to be added in hardware. Moreover,
many embedded applications do well without hardware floating-point support.

The NIOS II soft core processor [2], for instance, requires around 700 Logic Elements
(LE) when synthesized as a 32 bit integer processor onto a Field-Programmable Gate
Array (FPGA). When adding a floating point unit, the final design requires around thrice
the number of LE.

If an application requires floating point arithmetic or not depends mainly on the data set,
the application has to deal with. Frantz and Simar discuss this on the example of video
and audio processing [3]: While discrete cosine transformations and quantization opera-
tions as they appear in video signal processing can be effectively handled using integer
operations while audio processing typically uses cascaded filters where each filtering state
propagates the error of previous stages. Furthermore, audio signals must retain accuracy
even if the signal approaches zero due to the sensitivity of the human ear, which makes
audio applications less suitable for fixed point arithmetic.

Therefore, the employment of fixed point arithmetic can be advantageous for some em-
bedded applications where fractional numbers are required, but floating point operations
would be too expensive in terms of hardware cost or processing time.

Unfortunately, until recently, there was not much compiler support for fixed point data
types and no standard for implementing fixed point data types.

Without compiler support, a programmer either has to code the operations manually, use
one of the many libraries available for fixed point operations or use tools like Matlab [4]
that are able to generate C code that simulates fixed point arithmetic.

Existing solutions for fixed point libraries suffer from one of the following deficiencies:
(i) the data types are not standardized, thus it is not possible to reuse code with a different
library, (ii) not all required functions are supported, e. g., missing support for trigonomet-
ric functions, (iii) if the library is rather complete, the overhead on linking the library to
the final program creates a large memory footprint, and (iv) the library is not written in C
but in C++ or an architecture-specific assembly language.

In 2003, the ISO issued a draft standard that described the syntax and the data types
for fixed point arithmetic as an extension to the programming language C [5]. However,
for particular embedded target systems there is still a lack of compilers that support this
standard. Therefore, we have implemented the data types and functions of this standard
as a software library that can be used with a standard C compiler.

It is the purpose of this paper to describe a high-level language implementation of the
main parts of the proposed ISO/IEC Standard DTR 18037 and compare the results to the
standard software floating point library of the AVR GCC compiler. Our intention is to
provide a transitional solution for systems where compiler support for the new standard is
not yet available as well as a solution for applications with moderate performance require-
ments. Moreover, the timing behavior of the functions in our library has been thoroughly

FIXED POINT LIBRARY

ISO/IEC Definition Implemented
signed short _Fract s.7 -
signed _Fract s.15 -
signed long _Fract s.23 -
signed short _Accum s4.7 _sAccum s7.8
signed _Accum s4.15 _Accum s15.16
signed long _Accum s4.23 _lAccum s7.24

Table 1: Data types of the ISO/IEC Standard DTR 18037 and our versions of them

analyzed so that these data can be used for static Worst Case Execution Time (WCET) [6]
analysis of real-time computer systems.

2 ISO/IEC Standard DTR 18037
Because fixed point operations are commonly used for microcontrollers, the ISO/IEC has
summarized some guidelines and suggestions in a paper named ”Extensions for the pro-
gramming language C to support embedded processors‘’ [5], which defines some guide-
lines for including fixed point data type support into C compilers. This includes data
types, #pragma directives, constants, function names, and some mathematical conven-
tions.

Although the DTR 18037 standard is intended to describe fixed point extensions for C
compilers, we have decided to use those guidelines for the implementation of an external
C library.

Having the real time and code size limitations in mind, we decided to implement a
reasonable subset of the data types defined by the standard. The overall set of data types
and the implemented types are shown in Table 2. The numbers indicate the bits that are
available for representing the integer part (x.) and the fractional part (.x). Note that the
definition of our implementation exceeds the number of specified bits, which is still in
conformance with the standard, since the given values specify the minimum number of
bits for the data types.

The ISO/IEC standard also defines also three #pragma directives:

– FX_ACCUM_OVERFLOW defines the overflow behavior of the Accum data types.
When set to SAT, saturation is required, this means that when an overflow occurs,
the result is either the minimal or the maximal possible value of the data type. This
behavior often means a significant loss of speed and further increases code size,
so the #pragma is normally set to DEFAULT, which is the other possible value.
Since we cannot implement #pragmas in a library, this behavior can be set with a
#define FX_ACCUM_OVERFLOW before the library header file is included.

– FX_FRACT_OVERFLOW is the same for the Fract data types. Since we have none
of them implemented, this #pragma is not used in our library.

– FX_FULL_PRECISION forces the implementation to gain maximum precision, by
allowing a maximum error of one ULP (Unit in the Last Place) of the result. How-
ever, for particular problems, a precision of 2 ULPs on multiplication and division

ELMENREICH, ROSENBLATTL, WOLF

operations is sufficient, which enables optimizations towards execution speed and
code size. For our implementation the FX_FULL_PRECISION switch is not im-
plemented, instead the precision has been predicted separately for each function.

Almost any meaningful data type handling and some low level arithmetic functions are
defined through naming conventions and behavior descriptions. There is one version for
each data type respectively several for conversion and mixed type functions. Except for
their parameters they differ also by some trailing and/or leading characters which describe
the type of the parameters respectively the result. Some examples are given in Table 2.

Result Type Parameter Type Function Description
_Accum _Accum mulk Multiplication (x ·k y)
long _Accum long _Accum ldivlk Division (x

y
lk)

short _Accum short _Accum smulsk Multiplication (x ·sk y)
long _Accum _Accum lsink Sine (sinlk(xk))

Table 2: Examples for the naming of fixed point functions

3 Implementation
The primary goal of this work was to provide a fixed point library especially for use with
Atmel 8 bit processors in combination with real time applications. So, performance and
performance predictability were strong requirements for the design. Also flash memory
was very limited, therefore small code size was desired.

Apart from optimizing the overall code size of the library, each function has been com-
piled into a separated object file that is only linked to the final program if the function was
used.

To reduce code size, every function is compiled separately into an object file and then
combined via ’ar’.

A main decision that was made refers to the data types. The ISO/IEC paper recommends
both the _Fract and the _Accum type. The difference between those two types is only
the lack of integral bits in the _Fract type while not increasing the number of fractional
bits, so we decided to implement the _Accum type. To further limit the complexity of the
implementation, we only implemented two subtypes of the _Accum type. Although the
two data types should be named _Accum and long _Accum, there is a problem with the
name of the second type. As we use typedef to define the type, the name of the data
type must not have blanks in it. So we decided to call it _lAccum, which should be kept
in mind when comparing AVRfix with the ISO/IEC specification.

Both types are signed and held in a 32 bit container (signed long). While _Accum
has 15 integral and 16 fractional bits, _lAccum has only 7 integral bits but therefore 24
fractional bits. Because we use the long data type as container, addition and subtraction
are working implicitly by using integer arithmetic as long as _Accum and _lAccum
are not mixed. Therefore, addition and subtraction require no additional function in the
library.

Overloading of operators is not supported in ANSI-C, so for example a multiplica-
tion needs to be done by a function call or a macro. While function calls produce some

FIXED POINT LIBRARY

overhead on runtime, the use of macros increases code size. Most operations except con-
version functions are implemented as functions. Comparison functions are working as
long as the data types are the same; casting has no effect for _Accum and _lAccum. If
a comparison between a long and an _Accum is needed, one (or both) of the variables
needs to be converted before the comparison can be done. The same approach is needed
for assignments.

To meet requirements of code size and execution speed, the FX_FULL_PRECISION
switch has not been implemented. Instead, the expected precision has been evaluated and
documented separately for each function in [8]. This evaluation includes also sophisti-
cated math functions such as trigonometric functions and square root.

The library is completely written in C and has been tested and evaluated with the estab-
lished compilers avr-gcc 3.3.2 and the Microsoft Visual Studio IDE 6.0.

In reference to the ISO/IEC paper, the naming conventions are used accordingly when-
ever possible, meaning that for _Accum a k, for _lAccum lk and for _sAccum sk is
used at the end of the function name to indicate the type of the parameters. The type of the
return value is indicated by a letter before the function name. No letter suggests _Accum,
an l means that the return value is of type _lAccum, and an s means _sAccum.

For example, the multiplication function that multiplies two _Accum values and re-
turns an _Accum value, is named mulk. The multiplication function that multiplies two
_lAccum values and returns an _lAccum value, is named lmullk.

Further, the ISO/IEC paper specifies the FX_ACCUM_OVERFLOW flag, which defines
the behavior if an overflow occurs. If it is set to saturation (SAT), the value will be
either the maximum or minimum possible value if an overflow occurs. By default, an
overflow will give an undefined result. While in the ISO/IEC paper this flag is defined
as a #pragma directive, we needed to use a #define for the FX_ACCUM_OVERFLOW
flag. Independent from this flag the behavior can be achieved by calling the respective
version of the function directly. If a function provides both behaviors, there exist two
functions which have either S for saturation or D for default behavior as trailing character
after the function name. So one can attach an S to a function name to force saturation
behavior or a D to force the default behavior (resulting in e.g. mulkD or mulkS for the
two versions of mulk) if the function provides two different behaviors.

Apart from the four arithmetic basic operations, the library support also operations such
as square root, logarithmic and trigonometric functions. For the latter we have decided to
use the CORDIC approximation [7] instead of a Taylor series, because it saves consider-
able program memory when requiring sine and cosine (or, consequently, tangens) in the
same program while achieving almost the performance of the Taylor version.

4 Evaluation
For tests and benchmarks we used an evaluation board equipped with an Atmel ATMEGA
16, providing 16 MHz clock, 16 Kb flash memory and 2 Kb SRAM. For evaluating the
correctness of the calculations done by the library, we tried to cover all meaningful calcu-
lations. To speed up this brute force approach, we mainly did this on a PC and compared
the result with either results from 64 bit integer calculations or precalculated reference
results. For more sophisticated functions, we precalculated values in a meaningful range
with the statistical computing environment R and compared them with the result of the

ELMENREICH, ROSENBLATTL, WOLF

library functions. For example, the meaningful range for sine and cosine is from zero to
two times Pi, meaning for an _Accum parameter, that 411774 calculations and compar-
isons have to be done. For functions that have no fixed execution time, the execution time
over parameter is recorded and visualized via gnuplot.

4.1 Benchmarks on the Microcontroller

To measure execution time and verify the calculation results, we wrote a small microcon-
troller program. To measure execution speed, we use the 16 bit timer. The counter is reset
to zero, the function is called and the counter value is fetched afterwards. The execution
time, parameters and result is then transmitted via UART. To speed up transmission, a
high bit rate is used and the data is sent binary, so a conversion was needed to plot the
data in gnuplot.

4.2 Optimization

To optimize code for size and speed, every function was implemented as accurate as pos-
sible, trying to keep it mathematically fast and simple (thus reducing code size). After
that, the code was optimized by reducing assignments and redundant operations in a gen-
eral way. Then benchmarks of common operations were done on the specific hardware,
thus further reducing code size and speeding up execution.

4.2.1 Performance measurement of operations on ATMEGA16

Table 3 shows common operations and their execution time in ticks. As expected, as-
signments of short and long values require 4 resp. 8 ticks and multiplication has a fixed
execution time. Some interesting results are: the addition of a short value to a long value
is much slower than addition of two long values. Maybe, the short value is converted
to long first, resulting in another 7 ticks. Also, a logical AND has a small variation in
execution time, depending on the arguments.

4.2.2 Split of values

For many operations, the integral and the fractal part of an _Accum variable are processed
separated, so splitting of those parts is needed.

Method 1
stest = (unsigned short)(ltest & 0x0000FFFF);

stest2 = (unsigned short)(ltest >> 16); duration: 23

Method 2
short values[2];

((unsigned long)values) = ltest; duration: 16

As it can be seen, the compiler does not optimize the split automatically, manual op-
timization is needed. The acceleration gained by manual optimization in the specific
scenario is 7 ticks or about 30 percent!

FIXED POINT LIBRARY

Code Duration (ticks)
stest = 0x0F0F 4
ltest = 0x0FF0F00F 8
ltest <<= 2 36
ltest <<= 4 50
ltest <<= 8 78
ltest *= 2 74
ltest *= 256 74
stest <<= 2 24
stest <<= 4 34
stest <<= 8 54
stest *= 2 22
stest *= 256 22
ltest &= 0x0000FFFF 18
ltest &= 0xFFFF0000 18
ltest &= 0x00FFFF00 18
ltest &= 0x000000FF 19
ltest += ltest 20
ltest += stest 27
ltest = stest + stest 16
uitest = ltest ? 0 : 1 17
uitest = stest ? 0 : 1 10

Table 3: Typical operations and its specific execution time in ticks on the AVR architec-
ture.

4.3 Accuracy Test

To test the accuracy of the implemented functions, we compared the output values either
with precise 64-bit calculations for the _Accum and _lAccum data type (respectively
with precise 64-bit calculations for the _sAccum data type) for addition/subtraction, mul-
tiplication and division. For higher mathematical operation precalculated values are used.

The accuracy test was done on a PC as we use regular C code and the execution is
much faster as on the microcontroller. We assumed equality of the output after some
calculations done on both, the PC and the microcontroller. The established Microsoft
Visual C++ 98 environment was used as the reference compiler. Tables 4-7 depict the
results of the accuracy test for the multiplication and division functions.

4.3.1 Multiplication and Division

To test multiplication and division, we simply treated the _Accum and _lAccum val-
ues as signed 64-bit integer values, repeated the calculations with 64-bit accuracy and
compared the results.

For a multiplication x · y, all values |x| > (2i+f−1)·2−f

|y| will lead to an overflow, with i
being the number of integral bits an f being the number of fractional bits of the data type.

ELMENREICH, ROSENBLATTL, WOLF

Function Maximum Error
x ·sk y with default behaviour 0
x ·sk y with saturation behaviour 0
x
y

sk with default behaviour 0
x
y

sk with saturation behaviour 0

Table 4: Maximum error of the sAccum functions

Function Maximum Error
x ·k y with default behaviour 1 · 2−16

x ·k y with saturation behaviour 1 · 2−16

x ·lk y with default behaviour 1 · 2−24

x ·lk y with saturation behaviour 2 · 2−24

Table 5: Maximum error of the multiplication functions

y default behaviour saturation behaviour
2−n, n ∈ N ∩ [1, 16] 0 (incorrect ⇐ overflow) overflow detected
20 0 0
2n, n ∈ N ∩ [1, 14] 2−16 (rounding) 2−16 (rounding)
x 0 0
x
10

589824 · 2−16 589824 · 2−16

Table 6: Maximum error of x
y

k

y default behaviour saturation behaviour
2−n, n ∈ N ∩ [1, 14] 0 (incorrect ⇐ overflow) overflow detected
20 0 0
2n, n ∈ N ∩ [1, 6] 2−24 (rounding) 2−24 (rounding)
x 0 0
x
10

150994944 · 2−24 150994944 · 2−24

Table 7: Maximum error of x
y

lk

FIXED POINT LIBRARY

Of course, all values |y| < 1 will never lead to an overflow. So, we excluded all these
values from testing and checked the output error of all input values not leading to an
overflow. Unfortunately, this leaves us with about a very huge number of test iterations,
so we decided to take only every 201st value of both, x and y.

For a division x
y
, all values |x| > (2i+f−1) ·2−f · |y|will lead to an overflow. According

to the data type, this is only a limitation for x if |y| < 1. Unfortunately, this leaves us
with even more test iterations than we would have needed for the multiplication (nearly
264). Additionally, the reference division would have an unknown error function too. Both
problems were solved by using only powers of two as values for y and doing the reference
calculation with simple shift operations. Thus, this test can only show the accuracy of
the fixed point wrapper that we created to increase the accuracy of the integer division
function of the avr-gcc, which does the real division.

Due to the limitations of the data type, we were able to test the whole non-overflow
input range of the _sAccum type.

4.3.2 Extended and Trigonometric Functions

For extended and trigonometric functions (e.g. sine/cosine, logarithm etc.), the compar-
ison values were provided by R from the R Foundation, a statistical calculation environ-
ment. Most sophisticated functions have an error behavior that strongly depends on the
input. Thus regarding the error over the whole input range makes sense. For example,
Figure 1 depicts the error function for the _Accum square root function. An exhaustive

Figure 1: Accuracy distribution for
√

xk

ELMENREICH, ROSENBLATTL, WOLF

evaluation of all functions can be found in [8].

4.4 Performance Test

Our first attempt to test performance of our implementation was to use the destination
device, an Atmel ATMEGA 16, but as its maximum speed is 16 MHz and the serial port
is a very slow transmission system, we decided to go a different way. We implemented a
very simple simulator to test the performance on a PC.

4.4.1 The Disassembler & Simulator Creator (DsimC)

The Disassembler & Simulator Creator (DsimC) is a little Java-Application that disas-
sembles an .SREC-file for an Atmel ATMEGA16 and transforms each instruction into a
piece of C code. This code can be compiled and executed on a PC instead of downloading
and executing the original code on the microcontroller.

This was possible, because the ATMEGA16 has no caches or other elements that make
code execution times indeterministic, only a two-stage pipeline with very low effect on ex-
ecution time. So each hardware instruction is expanded to a group of C code instructions
which performs an equivalent operation, maintains the virtual status register flags and in-
crements a tick counter which furthermore can be used to determine the performance of
the library functions. In addition, every write to the UART Data Register (UDR) results in
a file output operation, which gives us a very high speedup. As assumed, the maintenance
of the status register flags turned out to be most expensive, resulting in a simulation speed
of only about 25 to 30 times faster than on the ATMEGA16 when using a Pentium-M
with 2 GHz. This seems to be a good speedup, but most of it comes from the serial port
implementation.

When we compared the performance values calculated by our simulations with values
we determined on the microcontroller, we noticed a slight drift. It turned out that the
simulator counts too many ticks under certain conditions, resulting in a few ticks more
per function call, if ever. But when we tried to isolate the operations causing this drift,
it turned out to be very tricky because of lack of an in-circuit debugger for the micro-
controller we would have to flash the target many, many times to reduce the code range
in which the drift appears. In our analysis we have noticed that the drift is only in one
direction, if ever. Fortunately, the simulator never gives fewer ticks than it would take
on the microcontroller, so this is sufficient to get guaranteed worst case execution time
values. However, by taking the discrepancies between simulator and real hardware into
account, tighter WCET values would be possible.

5 Comparison
The traditional way for fractional computing is the usage of floating point operations, for
which a various number of libraries exist. We compared our fixed point library with the
floating point library (libm) that comes with the avr-gcc bundle.

5.1 Accuracy

All data types compared here (float, double, _Accum and _lAccum) reside in a 32-
bit container. But the floating point data types have to separate the container for exponent

FIXED POINT LIBRARY

and mantissa, while the fixed point data types have the whole container for the sign bit,
the integral bits and the fractional bits. So, within the fixed point range ((231 − 1) · 2−16

respectively (231 − 1) · 2−24) the _Accum and _lAccum types really make the cut in
accuracy.

The _sAccum data type has clearly a lower accuracy than the floating point data types
since it resides in a 16-bit container only.

5.2 Addition and Subtraction

The fixed point addition and subtraction operations use the same instructions as normal
integer operations, so they really make the cut over floating point addition and subtraction.

Data Type Performance in ticks
double 74 to 80
_sAccum 14
_Accum/_lAccum 23

Table 8: Performance comparison of addition operations

5.3 Multiplication

Compared to the multiplication functions mulkD, mulkS, lmullkD and lmullkS the
average performance of the double operation is higher, while the WCET of the fixed
point multiplication functions is better. This is due to the fact that the double data type
is only implemented in 32 bit by the avr-gcc, thus a double multiplication involves a 23
bit multiplication of the mantissa and a addition of the exponent. In addition, the floating
point library has been optimized at assembly code level for average performance, which
explains the results.

Performance in ticks
Data Type Default Saturated
double 53 to 2851 -
_sAccum 79 to 82 92 to 95
_Accum 337 to 350 215 to 359
_lAccum 594 to 596 198 to 742

Table 9: Performance comparison of multiplication operations

5.4 Division

Compared to the division functions divkD, divkS, ldivlkD and ldivlkS the min-
imum, average and maximum performance of the double operation is in general better,
which can be seen in the overview given in Table 5.4 on the following page. As a conse-
quence, fixed point divisions should be avoided for performance reasons, if possible.

5.5 Floating Point Code Size

Using the floating point functions provided by the compiler, the code sizes measured can
be found in Table 5.5 on the next page.

ELMENREICH, ROSENBLATTL, WOLF

Performance in ticks
Data Type Default Saturated
double 66 to 1385 -
_sAccum 634 to 711 650 to 727
_Accum 820 to 1291 853 to 1386
_lAccum 876 to 1405 862 to 1416

Table 10: Performance comparison of division operations

Operation Size (Bytes)
Addition 1740
Subtraction 1740
Addition and Subtraction 1780
Multiplication 1510
Division 1280
Multiplication and Division 1982
All functions 2954

Table 11: Codesize of Floating Point operations

Table 5.5 shows that the library uses several sub-functions that are shared between
operations. To cover the basic arithmetic operations about 3k of Flash ROM are needed.
When using AVRFix and the datatype _Accum with default behaviour, only 758 bytes
are needed. For _lAccum 848 bytes and for _sAccum only 260 bytes are needed.

AVRFix has a clear advantage in code size compared to floating point operations.

6 Conclusion
The contributions in this paper are the implementation and evaluation of a generic fixed
point library based on the ISO/IEC Standard DTR 18037. The documentation [8] and the
source code is available as open source.

The fixed point library contains not only basic mathematical functions and conversions
but also more sophisticated operations such as square root, logarithmic and trigonometric
functions. The linking model allows having only the used functions in the final assembler
code, which saves considerable program memory over monolithic libraries.

For a specific target architecture, the Atmel AVR with avr-gcc compiler, we have per-
formed exact performance measurements, which can be used for static WCET analysis
and optimization of execution time and code size, which is of special interest for embed-
ded application on low-cost microcontrollers with few resources.

Addition and subtraction are generally by a factor of 3 to 5 faster than floating point
operations. The fixed point multiplication and division have worse average performance,
but a better WCET than the floating point operations for most data types. Moreover, since
the library has been written in C, there is also room for hardware-specific optimizations
of the library, e.g., by using inline assembler functions for time-critical parts. Regarding
code size the fixed point operations are clearly in favor.

If only addition, subtraction and multiplication is needed or a small data type like

FIXED POINT LIBRARY

_sAccum is sufficient, the use of fixed point operations can clearly be favored from
the viewpoints of speed, WCET, and code size. Sophisticated functions like trigonomet-
ric and exponential functions are slower than the fixed point versions, but require less
program memory, which makes the fixed point implementation attractive for projects on
small embedded microcontrollers where program memory becomes the main limiting fac-
tor. The optional saturation behavior is a nice feature which cannot easily be reproduced
by floating point calculations and small code size may be a decisive advantage.

In the future, we plan to add a pre-compiler that supports a smooth integration of fixed-
point data types and operations into the C language, where the library becomes fully
transparent to the coder.

Acknowledgments
This work was supported in part by the Austrian FWF project TTCAR under contract
No. P18060-N04 and by the ARTIST2 Network of Excellence on Embedded Systems
Design under contract No. IST-004527. The authors would like to thank the anonymous
reviewers for their valuable comments on an earlier version of this paper.

References
[1] J. D. Darcy. What every computer programmer should know about floating-point arithmetic. Set

of slides available at http://blogs.sun.com/darcy/entry/what every computer
programmer redux, 2006.

[2] Altera Corporation, San Jose, CA, USA. Nios II Processor Reference Handbook, March 2007. Version
7.0.

[3] G. Frantz and R. Simar. Comparing Fixed- and Floating-Point DSPs. Texas Instruments, Dallas, TX,
USA, 2004. White paper available at ocus.ti.com/lit/ml/spry061/spry061.pdf.

[4] D. P. Magee. Matlab extensions for the development, testing and verification of real-time dsp software.
In Proceedings of the 42nd Annual Conference on Design Automation, pages 603–606, San Diego, CA,
USA, 2005.

[5] ISO/IEC JTC1 SC22 WG14. Extensions for the programming language C to support embedded proces-
sors. ISO/IEC draft Technical Report ISO/IEC DTR 18037.

[6] P. Puschner. Worst-case execution time analysis at low cost. Control Engineering Practice, 6:129–135,
January 1998.

[7] Jack E. Volder. The cordic trigonometric computing technique. IRE Transactions on Electronic Com-
puters, Volume EC-8(3), 9 1959.

[8] M. Rosenblattl and A. Wolf. Fixed point library according to ISO/IEC standard DTR 18037 for Atmel
AVR processors. Bachelor’s thesis, Vienna University of Technology, Vienna, Austria, 2007. https:
//sourceforge.net/projects/avrfix.

