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Abstract

Typically, self-organizing systems comprise of a large
number of individual agents whose behavior needs to be
controlled by set parameters so that their interactions lead
to the creation of the desired system. To be self-organizing,
the system must mimic the evolutionary process. One way
to do this is by use of an evolutionary algorithm. This
mimics naturally-occurring genetic variation (mutation and
recombination of genes). To fulfill this purpose, we have
created a tool named FREVO (FRamework for EVOlutionary
design), which separates the input needed into the following
components: target problem evaluation, controller repre-
sentation and the optimization method. FREVO provides
well-defined interfaces for these components and supports
a graphical user interface to simulate the evolutionary
process. After obtaining the outcome for a simulation, it is
possible to validate and evaluate the results within FREVO.
FREVO has been successfully applied to various problems,
from cooperative robotics to economics, pattern generation
and wireless sensor networks. In this paper, we give an
overview of the architecture of FREVO and introduce a case
study involving smart grid networks.

1. Introduction

Over the past few decades, technological systems have
become smaller, more powerful and are often networked to
each other. This opens the possibility of creating large scale
applications to meet a demand for solving large scale dy-
namic and complex problems. However, in order to control
systems, a solution must be devised that has the appropriate
scalability and flexibility to complete tasks. An appealing
solution would be to engineer a self-organizing system for
this purpose. Typically, self-organizing systems contain a
large number of agents that interact with each other and their
environment. Although individual agents generally exhibit
simple behavior, as a large group, a global pattern usually
emerges that is more complex than simply the cumulative
sum of each agent’s individual behavior.

However, it appears to be difficult to design a self-
organizing system for a given task. Traditionally, systems
are often build like a jigsaw puzzle; each system component

has to fit in order to get a correct working system. When
building complex systems, this approach is very difficult to
maintain. A key issue is that the designer of a self-organizing
system has to give up the “direct” control approach. Instead,
the intended goal is to be achieved indirectly by defining the
agents’ rules. This is typically a very difficult task, since the
global behavior of a system of interacting agents can hardly
be predicted for a given set of local rules. In some cases,
the emergent behavior is even counter-intuitive, where even
experts have a strong tendency to falsely predict the effect of
an agent’s parameter in a complex system (see for example
the case of the slime mold behavior described by Mitch
Resnick [1]).

1.1. Evolving Neural Network Controllers

In our work, we concentrate on the evolution of neural
controllers as often used as candidate representations for
cooperative robots [2] or strategy development for game
playing [3]. Since the design of neural networks is crucial
itself, we use genetic algorithms to automatize the process of
designing the control system and, thus, decreasing the nec-
essary human interaction. In our previous work, we evolved
neural network controllers for self-organizing robots [4],
agent-based decision games [5], etc.

To solve such problems it is necessary to implement the
controller, the neural network and the genetic algorithm with
a simulation. The evaluation of this system would consist
of hand-crafted parameter changes and numerous simulation
restarts. This may be successful in achieving the goal for a
single simulation, but a drawback is that it cannot be reused
for a different simulation, nor can the results be compared if
other optimization mechanisms or alternative neural network
controllers should be evaluated.

There is a need for a generalization of design and imple-
mentation of such a system to reduce the set-up time for
a problem and improve its evaluation possibilities. There-
fore, we introduce FREVO (FRamework for EVOlutionary
design), a framework that splits the design of a system
into problem, representation, and optimization allowing for
exchanging different parts seamlessly. Appropriate interfaces
simplify the design as well as support for statistics and
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graph generation help the evaluation of such self-organizing
controllers.

1.2. State-of-the-Art

To the best of our knowledge only very specific frame-
works exist. In domains such as multi-agent adaptive system
design, machine learning and optimization methods are
proven to be successful and have resulted in vast set of
available software libraries and frameworks at the user’s
disposal.
In the past decade, experts in specific optimization and ma-
chine learning have made their code public. However, these
packages focus only on one specific optimization method
(e. g., genetic algorithms [6]) or on one target representation
(e. g., neural networks [7]).
General-purpose libraries provide a larger set of methods
and/or representations to the user [8] [9], but they either
lack the possibilities for the user to easily exchange methods
and representations within the same problem or they require
deep programming knowledge or expertise in algorithms.

This paper introduces the architecture of FREVO in
Section 2 and explain its main features and further shows
FREVO’s capabilities in a simple case study related to smart
grids in Section 3.

2. FREVO Architecture

Our proposed framework FREVO, supports engineers in
evolutionary design and evaluation of self-organizing sys-
tems. It provides the necessary tools to make an agent-based
model of a desired self-organizing system and to search for
the required local interaction rules using iterative heuristic
search. In addition, FREVO also supports the evaluation
of evolved solutions under predefined conditions. The key
feature of FREVO is the component-wise separation of the
key building blocks: the problem, method, representation,
and ranking. This structure enables the components to be
designed separately allowing the user to easily change and
evaluate different configurations and methods or to add an
interface to an external simulation tool. Each component
can be developed and tested separately and reused for new
projects. FREVO comes with a graphical user interface
allowing the engineer to pick the particular components for a
project (see Figure 1). The component concept also supports
fast evaluation of different configurations, for example, in
order to see which controller representation (e. g., neural
network vs. finite state machines) works better for solving
a given problem.

FREVO is written in Java and makes use of Java’s object
oriented model by defining interfaces to generic components.
When a new type component needs to be added, the user
is required to write the code for the component. In this
task, the user is assisted by FREVO’s generator tool and

Figure 1. Overview of FREVO graphical interface while
selecting a Problem component

guided by the methods required by Java’s interfaces. FREVO
is released as open source under GPL v3.0 (available at:
http://www.frevotool.tk).

In the following sections, we define the four component
types within FREVO. As depicted in Figure 2, the archi-
tecture introduces a waistline interface between the problem
(top) and the other parts of FREVO. This eases modeling
of a new problem, since only a few methods have to be
provided: an interface for connecting the agent’s I/O to the
agent controllers, a method for evaluating the problem (typ-
ically by a simulation run) and a fitness value that is given
as a feedback from an evaluation. A single composition of
a problem, method, representation and ranking defines a so-
called FREVO session containing details of all parameters
set for the experiment. In order to store simulation data for
later experiments and evaluations, FREVO saves individual
sessions and results in a compact XML format that can be
easily accessed, displayed and archived using tools available
within the program.

2.1. Problem definition

In the problem definition the evaluation context of the
agent’s behavior has to be implemented. In other words, this
component is responsible for the evaluation of the candidate
representations.

Due to the simplified nature of interfaces within FREVO,
implementing an own model should take little effort. It
is also possible to connect FREVO with external sim-
ulation tools. There are two types of problem compo-
nents: The first variant is to implement a subclass of
AbstractSingleProblem (see Figure 3), connects a
controller into a simulation and returns a fitness value as the



Figure 2. FREVO components (Problem (yellow), Opti-
mization Method (blue), Representation (green) and Ranking
(green))

Figure 3. Implementing a new problem class

result. To support multi-agent systems, there can be multiple
instances of the controller in the simulation, but they are
essentially playing “on the same team”. An example for this
problem type could be a group of robots in a cooperative
search mission.

The other variant, implemented as a subclass from
AbstractMultiProblem, evaluates multiple candidates
relative to each other. An example therefore would be a
simulation of two soccer teams playing each other. The
result of such a simulation only gives a relative ranking and
requires to run a tournament algorithm to get a ranking of
a pool of candidates.

2.2. Candidate Representation

The candidate representation describes the structure of
a possible solution, i. e., the implementation of an agent’s
controller. This implementation is agnostic to the selected
problem. It contains generic structures such as artificial
neural network (ANN) models that can be used for different
problems, ranging from the control of a robot, to making
economic decisions in market situations.

In order to support optimization algorithms,
every candidate representation must extend the
AbstractRepresentation class that enforces
the required mutation and/or recombination functions along
with the proper output format and range. Furthermore, these
components can optionally support different output formats
for later processing or network analysis such as Pajek [10].

The release version of FREVO comes with the following
representations:

• Fully-meshed net: A time-discrete, recurrent ANN
where each neuron is connected to every other neuron
and itself. During evolution, the biases of each neuron,
plus the connection weights are taken into account.

• Three-layered net: A similar ANN to the previous one,
but with a feed-forward structure instead of the fully-
meshed one.

• NEAT net: An ANN whose connectivity structure is
also taken into account for selection during evolution.
This representation was implemented based on the
NEAT model described in [11]

• Econets: Neural networks that can learn from their
previous outputs, based on the principles of ECONETS
presented by Parisi et al. [12]

• MealyFSM: A Mealy Machine (a special case of a
Finite State Machine) whose structure and transition
probabilities are evolved.

2.3. Optimization Method

The optimization method is used to optimize a chosen
candidate representation in order to maximize the fitness
returned from the problem definition. Typically, an op-
timization method creates a pool of possible candidates
from the solution representations, evaluates them using the
problem definition and gradually obtains candidates with
better performance. Currently, we have the following two
optimization methods provided in the release version of
FREVO:

• NNGA: An evolutionary algorithm that supports multi-
ple population, different selection schemes (eg. roulette
wheel selection) while trying to maximize population
diversity as well [13].

• GASpecies: An evolutionary algorithm that sorts can-
didates into species based on their genotype (similar
structures are put into the same species) to prevent



immature solution to die out too soon. This is particu-
larly beneficial when representations might undergo big
changes during evolution.

• Spatially Structured Evolutionary Algorithm: This al-
gorithm arranges candidates in a two-dimensional map
and performs genetic operations such as selection,
mutation and recombination in a local context, i. e., in
the respective Moore neighborhood of a candidate. This
algorithm has a slower convergence rate, but better
population diversity than a standard genetic algorithm.

2.4. Ranking

The ranking module evaluates all candidates and returns a
ranking of them based on their fitness. In case of problems
derived from AbstractMultiProblem, solutions can be only
compared relative to each other, e. g., if a soccer playing
strategy is evolved by repeatedly simulating a soccer match
between two teams [4]. For this case, FREVO allows to
choose between several ranking mechanisms defining how
to pair the solutions in order to find a dependable ranking
with a low number of comparisons (i.e. simulation runs).
See [14] for a discussion on robust methods for this purpose.

3. Case Study

FREVO has been used for the evaluation of many case
studies, involving evolutionary robotics [15], [16], [4], [17],
pattern generation [18], and wireless sensor networks [19].
In this section, we show the capabilities of FREVO by way
of a simple scenario. Let us consider a village consisting of
a number of households connected to a smart energy grid.

Each household can dynamically buy energy units from
the energy market at each hour of the day. The amount to
buy depends on a predicted per hour consumption and a
flexible part, where energy units can be bought if the price
is currently low these units are stored in a battery. The total
amount bought has to match a defined daily energy need.

Using FREVO, we have to define this scenario as a
problem component. The provided component creator helps
to set up the necessary class with the needed methods and the
required XML configuration file. The design of the problem
requires the definition of input values and output types for
the neural network (which we do not have to implement).
Additionally, we need a fitness function to train the neural
network. We modeled the current price, the current predicted
consumption, the money spent by the current household, the
energy bought by the current household and the target daily
energy need as inputs for the agent. The agent needs to
output one value is between 0.0 and 1.0 representing the
fraction of flexible energy units that should be bought within
this hour. The overall energy acquisition for an hour is the
sum of the number of flexible energy units (ef ) plus the fixed

number of energy units (i.e., the predicted consumption epc).

toBuy = output · (ef ) + epc

The fitness is calculated at the end of the day for all
households. It includes a penalty if too few energy units
are bought, i.e., the price for the difference increases the
price spent by a factor of the penalty. The fitness increases
if the highest number of energy units is bought (eb) for
the lowest price. Furthermore, it is better to buy only the
needed energy. The expected outcome is that at each hour
the predicted number of energy units is bought, and during
the lowest price period additional units are bought until the
energy threshold is reached.

fitness = eb/moneySpent

For our scenario we select our problem together with an
existing representation, optimization and ranking method.
In the following, we will explore which combination of
optimization method and candidate representation allows
for the most stable results. As optimization method we
make a session with NNGA and another session using the
GASpecies method. The representation can be either a fully-
meshed neural network or a three-layered neural network.
We chose empirically to evolve 200 generations, because
the fitness values stabilized. The smart grid problem is con-
figured for 10 households, where each needs at least 5,600
energy units a day. For all other settings the default values
of FREVO are chosen. One can store the configuration for
later use in a session file.

To account for random effects, we repeat each evolution
run 10 times with different random seeds and present the
fitness development as box plots per generation (FREVO
generates automatically the correct output for generating
boxplots of the fitness with R). In all scenarios the highest
evolved fitness is 0.1136. In the figures 4 and 5 one can
see that the fitness variance of GASpecies is higher than
of NNGA as shown in Figures 6 and 7. The reason is
that GA Species does not reach in all runs the highest
fitness. Although the combination of GASpecies and three-
layered neural network seems to need less generations to
reach a reasonable fitness, the combination with the fully-
meshed network results in reaching the higher fitness if
sufficient time is given for the evolutionary algorithm. The
NNGA algorithm shows very stable results, where all runs
reach the highest fitness within a few hundred generations.

It is easy to define different scenarios to be compared
using FREVO. One can decide what optimization method
or candidate representation results in the most stable and
best performing simulation/system for a given problem. The
next step is to validate and evaluate the resulting candidate
representation. FREVO generates result files that can be
loaded after evolving the candidates. The result file contains
the setting and neural network weights of the population
candidates of the last evolved generation, ranked by fitness.
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Figure 4. Fitness development vs. number of genera-
tions, optimization method: GASpecies, representation: Fully
meshed neural network
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Figure 5. Fitness development vs. number of gen-
erations, optimization method: GASpecies, representation:
Three-layered neural network

One can also configure in the optimization settings that the
results files are periodically written every nth generation.

An overview is given in Figure 8, where on the left
side the candidates are listed. By selecting one candidate,
it can be replayed with the same settings as done during
the evaluation. In order to test with different settings, the
parameters can be adjusted in the window to the right. For
example, the scalability of the evolved candidate can be
evaluated by adjusting the number of houses.

An additional feature of FREVO is the possibility to
implement graphical evaluations, such as done in [18] to val-
idate the pattern generation function of an evolved cellular
automaton. In the smart grid scenario it is sufficient to print
out the number of bought energy units per household at each
hour and to print the fitness to see whether the parameters
lead to decreased fitness. In our scenario, the households buy
the required energy units and then buy more when the price
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Figure 6. Fitness development vs. number of generations,
optimization method: NNGA, representation: Fully meshed
neural network
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Figure 7. Fitness development vs. number of generations,
optimization method: NNGA, representation: Three-layered
neural network

is at the lowest stage. The behavior of the buyers does not
change if the number of houses is increased. However, the
fitness decreases because currently it is dependent on totally
bought energy units, and the totally spent money which
increases if the number of houses increases. Normalizing
the fitness by the number of households solves this issue
and results in the comparable fitness in all cases. Thus,
FREVO helps in validating and evaluating not only the
resulting candidate representation, but also the problem
implementation itself.

4. Conclusion

We introduced FREVO, a tool for designing and evalu-
ating self-organizing systems. FREVO concentrates on evo-
lutionary methods for agent controllers, as often applied in
autonomous robots, but extends this principle to arbitrary



Figure 8. FREVO in evaluation mode. Left: list of candidates,
right: configurable parameters

applications. With the principle of reusable, independent
components, FREVO allows for easily exchanging different
implementations of neural controllers, optimization methods
and ranking methods. A simple example can be implemented
with a small number of lines of code. The implementation
effort is reduced to defining the context, the fitness function
and define input and output of the agent. After evolving the
agent controllers, the simulations with the resulting candi-
dates can be replayed either with the same settings or with
different parameters for evaluation purposes. As an example
we implemented a system of households buying energy in
a dynamical energy market. We showed the scalability of
the evolved neural network by changing the number of
households connected to the smart grid. As a future work
we want to concentrate on further integrating different rep-
resentation models, such as evolvable Finite State Machines
and optimization methods and ranking methods for instances
of AbstractMultiProblems.
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