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Abstract—We analyze the dynamics of interference in a wire-
less network under a correlated traffic model: A given node
increases or decreases its transmission probability if it has
transmitted in the preceding time slot. This traffic model is
of importance since it resembles part of the behavior of many
communication techniques as, e.g., retransmission protocols or
cooperative relaying. Results show that the traffic model has
high impact on temporal correlation of interference, which has
to be considered when designing such techniques.

Index Terms—Interference, correlation, retransmission proto-
cols, wireless networks, Rayleigh fading, slotted ALOHA.

I. INTRODUCTION AND MOTIVATION

The quality of radio links in wireless networks changes over
time. This behavior called fading is caused by movement of the
nodes and objects reflecting radio waves and by transmitters
causing interference. Packets can be lost in periods in which
the channel is ’bad’. Many communication techniques and
protocols counteract these channel conditions, e.g. retrans-
mission protocols [1], channel coding and interleaving [2],
cooperative relaying [3], and opportunistic scheduling [4].
Good knowledge of the channel dynamics is essential when
designing such techniques. Although fading dynamics has
received a lot of attention in the past, interference dynamics
has not. Only recently the research community gained some
interest in the dynamics of interference [5]–[9].

A first step toward a better understanding of the temporal
behavior of interference is to identify important causes for
interference correlation and to analyze three extreme cases:
the cause is not considered, the cause changes independently
from time to time, and the cause does not change at all [7].
The next step is to generalize these results to more realistic
cases in between these extreme setups. First results on this
are presented in [8] and [9], where the dynamics of the node
locations is enriched by different mobility models. This setup
resembles the case where node locations neither stay constant
over time nor change independently in each time step.

In the paper at hand we apply a similar principle to the
traffic as a cause of interference correlation. While previous
work analyzed extreme cases, where either senders are inde-
pendently chosen or retransmit with probability one, this paper
analyzes a case in between. We apply a traffic model that
increases or decreases the transmission probability dependent
on whether a given node sent in the preceding time period
or not. Based on these assumptions we derive closed-form
expressions for the correlation of interference.

Section II describes our modeling assumptions and setup.
The derivation of the correlation coefficient of interference is
presented in Section III. Next, in Section IV analytical results
are compared to simulations. Section V finally concludes.

II. MODELING ASSUMPTIONS

The correlation of two random variables X and Y is
measured in terms of Pearson’s correlation coefficient

ρ(X,Y ) =
cov(X,Y )√

var(X)
√
var(Y )

. (1)

The terms var and cov denote the variance and covariance,
respectively.

A. Node Locations

The nodes of the network are located at the points of a
Poisson Point Process (PPP) N with density λ. For simple
notation let N denote both the PPP and the set of nodes.
Let ‖x‖ denote the distance of a node x ∈ N to the origin
(0, 0). The locations of the nodes are fixed, i.e., no mobility
is applied. Fixed locations can also introduce a correlation of
interference [5], [6]. We are excluding this correlation from
our analysis by assuming that the node locations are a given
condition for the calculations.

B. Channel

All nodes send with the same transmission power κ in W.
The wireless channel is modeled via path loss and Rayleigh
block fading. All nodes access the wireless channel applying
Slotted ALOHA, where time is divided into discrete slots
indexed by τ ∈ N. In our correlation analysis we compare two
arbitrarily chosen consecutive time slots indexed by τ = t− 1
and t. Let Sτ ⊆ N denote the subset of nodes transmitting in
slot τ .

By interference we denote the overall power received by an
antenna at a given point in space from all transmitting nodes
(except the signal the node is intended to receive). Without
loss of generality we limit our analysis to an antenna at the
origin (0, 0) of the plane R2. The interference at (0, 0) in slot
τ can be expressed by [10]

Iτ =
∑
x∈Sτ

κ l(‖x‖)h2x . (2)

In this equation, l(‖x‖) denotes the path loss at distance ‖x‖. It
is possible to apply any non-singular (i.e. limx→0 l(‖x‖) <∞)
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path loss model; we assume l(‖x‖) = min(1, ‖x‖−α) with
a path loss exponent α > 2. The exponentially distributed
random term h2x models Rayleigh fading, i.e., it denotes the
current channel state for node x. Fading is assumed to be
independent for each sender: h2x

i.i.d.∼ Exp(1) for all x.
A block fading model is applied, in which the channel is

held constant for a certain time c and is then newly chosen
independently from previous states (c.f. [11], [12]). For the
time period c we distinguish three different cases:

0) We assume a constant channel over time, i.e. no fading
is present, h2x ≡ 1.

1) The channel is changing at the beginning of each time
slot, which means c = 1. Hence, we have independent
fading for each slot.

2) The channel changes after c ≥ 2 slots. This slow fading
channel increases the correlation of interference.

C. Traffic

Traffic is modeled in the following way: In each slot
every node sends a message with a certain probability. The
probability of slot t depends on the previous slot t− 1: if a
node sent a packet in slot t− 1, it again transmits in slot t
with probability p1 (the so-called retransmission probability).
Otherwise, it transmits in slot t with probability p0. If p1 = p0,
slot t− 1 has no influence on slot t. If p1 < p0, a node
reduces its transmission probability if it sent one slot before.
This could model a protocol for which a node waits for an
acknowledgment before sending again. Case p1 > p0 could
model a retransmission protocol that immediately detects a
lost packet and retransmits it in the next slot [1].

D. Case Notation

Using the notation introduced in [7], the three cases an-
alyzed in this paper are denoted by (0, 0, 3), (0, 1, 3), and
(0, 2, 3). The meaning of the numbers is the following: The
first number (here always 0) indicates that the node locations
are not taken into account for calculating the correlation. The
second number denotes one of the three cases explained in II-B
for the channel. The third number (here always 3) finally
denotes that the traffic model described above is applied.

III. DERIVATION OF CORRELATION COEFFICIENT

Let S11, S10, and S01 denote the set of nodes that send in
both slots t− 1 and t, that send in t− 1 but not in t, and
that send in t but not in t− 1, respectively. Further, let S..
denote the fractions of nodes within these sets and I.. denote
the interference caused by the nodes in these sets. The major
task is to derive the fractions of nodes that are within these
sets. Table I summarizes the results of this paper.

A. Fraction of Nodes in S11, S10, and S01
We start by deriving the expected fraction of senders E[St]

in a slot t. E[St] mainly depends on the expected fraction of
senders E[St−1]. More specifically

E[St] = E[St−1] p1 + (1− E[St−1]) p0 . (3)

TABLE I: Correlation of Interference: Summary of Results

Locations Channel Traffic Interference correlation
i j k ρ Eq.
0 0 3 p1 − p0 (15)
0 1 3

(1−p1)(p1−p0)
2−2p1+p0

(21)
p0(1+cp0)+p21(4+p0(1+2c))−2p31

(2−2p1+p0)(p1−cp0−1)0 2 3
+

p1(p20(1−2c)−2p0(1+c)−1)
(2−2p1+p0)(p1−cp0−1)

(26)

Since we are interested in the long run, we calculate the
fraction of nodes transmitting in the limit for t → ∞.
Therefore, we calculate the fixed point SFP of (3) by solving
E[St] = E[St] p1 + (1− E[St]) p0, which yields

SFP =
p0

1− p1 + p0
. (4)

Next, we calculate the fractions of nodes within the sets.
S11 contains all nodes sending in t− 1 that also send in t,
which gives

E[S11] = SFP p1 =
p0 p1

1− p1 + p0
. (5)

The set S10 contains all nodes sending in t− 1 that do not
send in t, which gives E[S10] = SFP (1 − p1). Similarly, the
set S01 contains all nodes that do not send in t− 1 but send
in t, which gives E[S01] = (1−SFP ) p0. Both equations yield
the same result, i.e.

E[S10] = E[S01] =
(1− p1) p0
1− p1 + p0

. (6)

B. Interference Correlation for Case (0, 0, 3)

Let N1 and N2 denote two randomly chosen disjoint subsets
of N . If many strong interferers are within N1, they are
not within N2, because the sets are disjoint. This property
introduces a negative correlation of the interference caused
by nodes within N1 and N2. Theorem 1 in [7] enables us
to calculate the correlation of the interference caused by these
two sets based on the fraction of nodes they contain. Applying
this theorem to the sets S11, S10, and S01 yields

ρ(I11, I10) = −

√
p20 p1

1 + p0 + p1 (p20 − 1)
, (7)

ρ(I10, I01) = −
p0 (1− p1)

1 + p1 (p20 − 1)
. (8)

Next, we derive the correlation coefficient ρ(0, 0, 3) based on
these results. Let γx(S10) denote the indicator variable that
node x ∈ S10. It is Bernoulli distributed with variance

var(γx(S10)) = E[S10] (1− E[S10]) . (9)

The indicator variables γx(S01), γx(S11), and γx(S) are
defined in a similar way.



The expected variance of interference caused by nodes S10
can be derived by

E
[
var (I10 | N )

]
= E

[
var

(∑
x∈N

κ l(‖x‖) γx(S10)

∣∣∣∣∣ N
)]

= κ2 · E

[∑
x∈N

l2(‖x‖)

]
· var(γx(S10))

= κ2 · λ
∫
R2

l2(‖x‖)dx · (1− p1)(1 + p1p0 − p1)p0
(1− p1 + p0)2

α>2
= κ2 · λ απ

α− 1
· (1− p1)(1 + p1p0 − p1)p0

(1− p1 + p0)2
. (10)

The second equation holds since κ and l2(‖x‖) are constants
regarding the variance operator. The third equation holds due
to Campbell’s theorem, and (6) substituted into (9). Following
the same steps except applying (5) instead of (6) yields

E
[
var (I11 | N )

] α>2
= κ2 · λ απ

α− 1
· p1(1− p1)p0(1 + p0)

(1− p1 + p0)2
.

(11)
In the same way we can derive the variance of interference I ,
which gives

E
[
var (I | N )

] α>2
= κ2 · λ απ

α− 1
· p0(1− p1)
(1− p1 + p0)2

. (12)

The covariance of the interference in the two time slots
t− 1 and t can be expressed by

E [cov(I11 + I10, I11 + I01 | N )] = (13)
= E [var(I11 | N )] + 2E [cov(I11, I10 | N )]

+ E [cov(I10, I01 | N )] .

The covariances in this expression can be computed by rear-
ranging (1) to

E [cov(I10, I01 | N )] = (14)

= ρ(I10, I01) ·
√
E [var(I10 | N )]

√
E [var(I01 | N )]

and similar for E [cov(I11, I10 | N )]. By substituting all results
derived above into these last two equations and by dividing
(13) by (12) we can calculate the correlation of interference
for two consecutive time slots in case (0, 0, 3) by

ρ(0, 0, 3) =
(p1 − 1) (p1 − p0)

p1 − 1

p1<1
= p1 − p0 . (15)

Next, we distinguish between increased and decreased re-
transmission probabilities. First, we consider an increased
probability p1 > p0. For easier comparison of different
values of p0 and p1, let p+ denote the linear increase of
the transmission probability after a node has sent, i.e., p1 =
(1 − p+)p0 + p+. We have p1 = p0 for p+ = 0 and p1 = 1
for p+ = 1. Substituting this equation into (15) gives

ρ(0, 0, 3) = p+(1− p0) (16)

for 0 ≤ p+ < 1. Note that p+ = 1 implies p1 = 1 and further
that the denominator of (15) equals 0. Calculating the limit
yields

lim
p+→1

ρ(0, 0, 3) =
(1− p0)2

1− p0
p0<1
= 1− p0 , (17)

which corresponds to (16). For p0 = 1 the denominator is
equal to 0. For all 0 ≤ p+ ≤ 1 the limit is

lim
p0→1

ρ(0, 0, 3) = 0 . (18)

Second, we analyze the case p1 < p0. Thus, we set p1 =
p− p0 for 0 ≤ p− ≤ 1 yielding a correlation coefficient

ρ(0, 0, 3) =
(p0p

− − 1) p0 (p
− − 1)

p0 p− − 1

p0p
−<1
= p0(p

− − 1) .

(19)
The correlation coefficient is ρ(0, 0, 3) ≤ 0 for all 0 ≤ p− ≤ 1.

C. Interference Correlation for Case (0, 1, 3)

We now assume that each node suffers in every slot under
independent Rayleigh fading. Due to the independence of
fading in consecutive slots, the overall variance of interference
is increased and therefore the correlation coefficient is reduced.
The variance of interference with independent Rayleigh fading
is derived in [7], (32), and is given by

E
[
var (I | N )

] α>2
= κ2 · λ απ

α− 1
· p0(2− 2p1 + p0)

(1− p1 + p0)2
. (20)

Dividing (13) by this variance yields

ρ(0, 1, 3) =
(1− p1) (p1 − p0)

2− 2p1 + p0
. (21)

Similar to case (0, 0, 3) we distinguish between reduced
and increased retransmission probabilities. For an increased
retransmission probability, we substitute p1 = (1−p+)p0+p+
into (21), which leads to

ρ(0, 1, 3) =
p+ (1− p+) (1− p0)2

(1− p+) (2− p0) + p0 p+
. (22)

For a decreased retransmission probability, we substitute p1 =
p−p0 into (21) and get

ρ(0, 1, 3) =
p0 (p

− − 1) (1− p− p0)
2− 2p0 p− + p0

. (23)

D. Interference Correlation for Case (0, 2, 3)

Last but not least, we have a constant channel over c ≥ 2
slots. We assume that the channel changes of different nodes
are not all in synchrony. Furthermore, we subdivide the set
S11 into the sets of nodes having the same channel states in
both slots and nodes having different channel states. These
sets are denoted by S ′11 and S ′′11, respectively. Hence, we have
S11 = S ′11 ∪ S ′′11. The fractions of nodes out of S11 that are
within S ′11 and S ′′11 are derived in [7], (46). Combining this
result with (5) yields

S′11 =
p0 p1 (1 + p0(c− 1)− p1)

(1 + p0 − p1) (1 + cp0 − p1)
, (24)

S′′11 =
p20 p1

(1 + p0 − p1) (1 + cp0 − p1)
. (25)
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Fig. 1: Interference correlation in case (0, 0, 3).
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Fig. 2: Interference correlation in case (0, 1, 3).
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Fig. 3: Interference correlation in case (0, 2, 3).



By substituting these fractions into the derivation presented in
Section III-B we calculate the correlation coefficient ρ(0, 2, 3).
This correlation coefficient is

ρ(0, 2, 3) =
p0 (1 + cp0) + p21 (4 + p0(1 + 2c))− 2p31

(2− 2p1 + p0) (p1 − cp0 − 1)

+
p1
(
p20(1− 2c)− 2p0(1 + c)− 1

)
(2− 2p1 + p0) (p1 − cp0 − 1)

. (26)

We again substitute p1 = (1− p+)p0 + p+ for increased and
p1 = p−p0 for decreased retransmission probability into (26);
the resulting equations are not presented.

IV. INTERPRETATION OF THE CORRELATION COEFFICIENT

In the following we present plots of the equations derived
above and describe their behavior. In Figures 1 to 3 lines
denote theoretical results while points indicate simulation
results. As can be seen in the plots, theory generally matches
well to simulations we performed to complement derivations.

Figure 1 plots the correlation coefficient for case (0, 0, 3).
The correlation coefficient linearly increases with p1 and
linearly decreases with p0. If p1 ≥ p0 (Figure 1(a)) the
correlation depends on the increase of the transmission prob-
ability after a node has sent. If it is not changed (p+ = 0)
there is no correlation. Otherwise, a positive correlation is
introduced. If p1 < p0 (Figure 1(b)) the sending probability
of a given node is decreased after a transmission. This results
in a negative temporal correlation of interference. In the
extreme case where a node always stays quiet directly after a
transmission (p−=p1=0), the correlation coefficient is −p0.

Case (0, 1, 3) is similar to case (0, 0, 3) except that inde-
pendent Rayleigh block fading is introduced. As we know
from previous work [6], [7], this kind of fading reduces the
correlation by increasing the variance of interference. Figure 2
confirms this result (mind the different scale compared to
Figure 1). For both reduced and increased retransmission prob-
abilities we have similar trends to case (0, 0, 3). However, the
correlation shows a non-linear dependence on the transmission
probabilities, which stems from the non-linear influence of
these probabilities on the variance of interference.

In contrast to these two cases, case (0, 2, 3) introduces an
additional cause for interference correlation: a slowly changing
channel. In Figure 3 plots of the correlation are shown, for
which the channel stays constant for c = 4 slots before
changing. This case can be interpreted as a mixture of case
(0, 0, 3), in which the channel stays constant forever (c→∞),
and case (0, 1, 3), in which the channel changes in each slot
(c = 1). The correlation again shows a non-linear dependence
on the transmission probabilities due to fading.

V. PRACTICAL IMPLICATIONS

We extended recent research results on the temporal behav-
ior of interference considering correlation of traffic. Here, the
transmission probability of a given node is altered if it has
sent in the preceding slot. This change could be introduced,
e.g., by a retransmission protocol that sends a packet again
when lost. If the protocol is built in a way that a positive
correlation is caused, this could diminish its efficiency: While

constructed to counteract bad channel conditions, it introduces
a correlation that again leads to similar conditions at the
second transmission. If, however, the protocol is designed in
a way to achieve a negative correlation, this might increase its
performance significantly. It is therefore important to consider
the dynamics of interference when constructing such protocols.
The intention of this paper is to provide the means to analyze
protocols with regard to their influence on interference dy-
namics in a network. Further investigations could apply these
methods to analyze existing protocols.
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