
This is the author’s version of the work. Personal use of this material is permitted. This paper was published as:
M. Pöchacker and W. Elmenreich. Model implementation for the extendable open source power system simulator rapsim. In Proceedings of the 12th International
Workshop on Intelligent Solutions in Embedded Systems (WISES’15), pages 103–108, Ancona, Italy, October 2015.

Model Implementation for the Extendable Open
Source Power System Simulator RAPSim

Manfred Pöchacker, Wilfried Elmenreich
Institute of Networked and Embedded Systems / Lakeside Labs

Alpen-Adria Universität Klagenfurt, Austria
Email: manfred.poechacker@aau.at, wilfried.elmenreich@aau.at

Abstract—The open power system simulation framework
RAPSim provides interfaces for extending and adapting sim-
ulation models and algorithms. This is especially useful for
researchers working with experimental custom models. The code
of RAPSim is available under an open source license which
allows users to publish extensions together with the original
code. This paper gives an overview on the software architecture
of RAPSim and introduces the necessary steps to implement a
new customized model by the example of a wind turbine model,
which can be implemented with three short code snippets and by
specifying an icon for the graphical user interface. As a result,
the new wind turbine model is available for simulation models
and can be handled with full GUI support.

Keywords Microgrids, Open Source Simulation, Power
System Simulation, Renewable Energy Sources

I. INTRODUCTION

Integration of renewable and green power sources is im-
portant for power grids all over the world. The prospect of
reduced carbon emission, cost-efficient and distributed power
production are some of the enhancers of this development.
As the advantages of renewable power generation are ap-
preciated, sustainable installation of power systems requires
specific design fitting the local conditions. A broad field of
environmental conditions must be considered in the planning
phase of a micro power system. This includes for instance
available resources, climate and weather conditions, expected
power demand profile, user habits, or fault and maintenance
scenarios. Both, research and engineering requires smart grid
simulations that match these diverse specifications. In par-
ticular, extensive simulations are needed to demonstrate the
abilities of a highly reconfigurable energy grid [1].

Simulation of microgrid scenarios is a field that requires
combination of experts and methods from various fields.
Physical continuous models, discrete communication models,
game theory, and statistical modeling should complement
each other [2]. Current research works on combination of
different approaches or integrates methods from other fields
into established tools. A comparison for open power system
simulation software is given in [3]. Besides high end research
tools and high performance commercial software there is an

This work was performed in the research cluster Lakeside Labs funded by
the European Regional Development Fund, the Carinthian Economic Promo-
tion Fund (KWF), and the state of Austria under grants 20214/22935/34445
(Smart Microgrid Lab) and 20214/23743/35470 (Project MONERGY).

application field of easy to use and flexible simulation soft-
ware. This basically aims at interested users that cannot spend
much money on licenses and do not have with sophisticated
programming skills. As for instance in teaching, the goal
would be to facilitate using such a tool in a class. RAPSim
is a microgrid simulation tool designed with such features in
mind. The combination of renewable power source simulation
and basic power system features makes it interesting especially
for microgrid simulation. A general description of the software
is presented in [4]. RAPSim is open software and the source
code is publicly available at http://rapsim.sourceforge.net/.

All the features in RAPSim are accessible via a clearly
laid-out GUI which is a distinguishing feature [3] compared
to many other power system simulators like MatPower [5],
UWPFLOW [6], IPSYS [7], MatDyn [8], and GridLAB-
D1[10]. As many publications demonstrate the field is rapidly
progressing [11], [12], [3], [13], [14], [15]. RAPSim focuses
on microgrid simulation (island and grid connected [16]) with
different types of (renewable) generation and residential loads.
It is intended for usage in classroom without accruing of
license costs and for suitable research.

While using RAPSim via its graphical user interface aims at
users without programming expertise, it is possible to extend
RAPSim with additional models, for example for distributed
energy resources or consumer patterns by writing Java classes
that fit into the structure of the project. RAPSim’s architec-
ture provides flexibility for changing parts of any simulation
model; adapting the objects and their models to the local
conditions is possible while the grid wide control algorithm
remains unaffected. It allows the inclusion of measured data,
e. g., for local weather conditions or user load curves from
real measurement campaigns such as [17]. Many functions
and features are created to simplify this and make it easy
also for users with minimum programming experience. This
paper gives an introduction for implementing such user spe-
cific models in RAPSim by giving two examples. The first
example is based on a mathematical model, starting with the
characteristic equation and following all the steps until detailed
code explanations. The second example utilizes external data
of residential demand to get a model within RAPSim.

The next section contains a brief description of the RAPSim

1There exist custom GUIs for GridLAB-D such as GridSpice [9]. By
default, GridLAB-D is distributed without a user interface.

Fig. 1: A simple scenario within RAPSim of two grid con-
nected households with wind and PV generation

project and its current capabilities. This is followed by a
description of the relevant software components for model
implementation in section III. The concept of the models
and the two examples are content of Section IV. The first
exemplary model is a wind turbine generator, the second one
describes a load model of an average residential house. Finally,
we give a conclusion and an outlook on future work.

II. THE RAPSIM SIMULATION FRAMEWORK

The RAPSim simulation software provides several grid
objects that can be placed in a simulation lattice. Grid objects
can be any devices that produce or consume electrical power
or are involved in power transportation and transformation.
All the objects together form a scenario which is the topo-
logical representation. RAPSim adds time-based simulation
to the scenario. Timing (starting and end time of simulation,
increment) can be specified up to one minute resolution and
span multiple days. The simulation framework is structured
in two levels, a grid-wide one and one level of individual
grid objects. The calculations at the grid wide level are called
algorithms, e. g., power flow analysis. A single grid object
is based on an object model for internal calculations. The
simulation framework provides the following features:

a) A graphical interface to create the intended scenarios and
to control the simulators functions.

b) Functions to save and load simulation scenarios in a
generic XML format.

c) A time thread that models time of day and day of the
year up to minute resolution.

d) Generation of output files in CSV-format. All object
parameters can be selected in any combination to be
written into a CSV output file for all time steps.

e) Weather simulation which can be done via stochastic
models or emulated by measured data.

f) Topological grid analysis that identifies the objects within
a bus and aggregates their parameter values.

g) Administration of algorithms for any grid wide calcula-
tions.

h) Administration of application-specific models that can be
implemented and added by the user.

The interaction of these functions within a time step of the
simulation is shown in Figure 2. The weather data in combi-
nation with the current time are given values or environment

Weather & Time Update

Objects Model Update

Topological Grid Analysis

Algorithm Calculation Step

Write Output into File

Update View

Wait until Idle Time

Fig. 2: Tasks executed within a simulation step of the time
thread

for the following tasks. Many object models, like those for
solar power plants, refer to this data. The topological grid
analysis is only done in case the grid was modified since
the last simulation step. Any grid modification during running
simulations releases an interrupt on the time thread to redo the
topological analysis. The user has the freedom to add, remove,
modify, or relocate any grid object, even while the simulation
is running. After the algorithm’s function was performed the
results are shown by updating the view and optionally, by
writing to the output file. For fine-tuning the user’s view of
the simulation in the GUI, it is possible to set an idle time until
the next simulation step allowing for an accelerated real-time
view of a simulation.

The whole project is implemented in Java, therefore it is
platform-independent. The grid objects can be specified for
designated cases, and output files can be generated as required.
Users can import the project into their preferred integrated
development environment (IDE), for example eclipse2. By
inheriting from abstract models, RAPSim can be quickly
extended with new models which will be automatically in-
cluded in the selection menus of the GUI. As we will show,
extending RAPSim is straightforward: The implementation of
new models requires some Java programming skills and some
basic understanding of the software structure. An abstract
Java class needs to be extended, the specific methods must
be implemented and the classes must be added to the fitting
code package The following paragraphs provide all necessary
information to enable the reader for implementation of a Grid
Object Model in RAPSim.

Figure 3 shows the property window of the grid object
wind turbine power plant. The window name contains also the
position in the simulation lattice and the bus which this object
is assigned to. The upper part shows three object variables.
The algorithm (which is simple power distribution in this
case) sets the required object parameters visible. The part
below is designated to the model of the object. It contains

2eclipse.org

Fig. 3: Property window of a wind turbine power plant

a selection menu for the different implemented models, an
icon, the parameters of the model and a description field.

III. SOFTWARE STRUCTURE OF RAPSIM

The general software structure is following the model-
view-controller pattern. All the classes required for
implementation of a new grid object model can be
found in the packages sgs.model.gridObjects
and sgs.model.objectModels. Figure 4 gives an
overview about the main software parts involved in the
simulation. The time thread initializes the algorithms and
performs the calculation step as shown in Figure 2. The
SgsGridModel, which represents the scenario, contains the
smart grid objects as well as the collections. Smart grid
objects that can handle models have an abstract model class
associated. Any new model needs to inherit from this abstract
model class.

A. Smart Grid Objects and their Object Models

The Smart Grid Objects is the general abstract class for all
grid objects used in the simulation. The abstract object classes
implement general functions for

• administration of the objects parameter set and its be-
havioral model,

• handling of the property window,
• generation of the object menu in the GUI, and
• displaying the object icon in the simulation panel.

The specific calculations are implemented in the object or in
its protected attribute model. Thus, a model is encapsulated
in its object. This enables the use of different models for the
same object, like for instance a wind turbine which can be
modeled by the power curve P (v) of a specific type or by

Fig. 4: Within the RAPSim software structure the grid object
model is encapsulated in the object

cA Smart-
GridObject

cA ProSumer

cAM
PowerPlant

cM
CostumPow-

erPlant

cM FossilFu-
elPowerPlant

cM Wind-
TurbinePow-

erPlant

cM Solar-
PowerPlant

cAM Consumer cM Costum-
Consumer

c GridPower

cA Power-
Transport c Connector

c PowerLine

Fig. 5: The current inheritance tree of the grid objects in
RAPSim. All abstract classes are labeled as cA and classes
that instantiate a model as cM .

its geometry and the kinetic energy in the wind. The model
calculates internal behavior while the object communicates its
results at grid level via a standardized interface. The current
software structure provides several grid object classes which
inherit from the abstract class smart grid object as shown in
Figure 5. This structure will be enriched by additional grid
objects in future versions of the software project. The type
of object implicitly declares some of the used parameters,
like e. g., every power plant object has the parameter power
production.

Figure 6 shows the currently implemented model structure
which follows closely that of the objects from Figure 5. For all
object classes cM exists an abstract model class which needs
to be extended to associate the implemented model with the
specific object type. Abstract models organize the interaction
with the object and provide general and GUI-related functions

cA Ab-
stractModel

cA

AbstractPow-
erPlantModel

cA Abstract-
CustomPow-
erPlantModel

c Constant-
PowerModel

cA Ab-
stractWind-

Power-
PlantModel c UsualWind-

TurbineModel

c Ran-
domWindTur-

bineModel

cA Abstract-
SolarPower-
PlantModel c So-

larSquareMe-
terModel

c So-
larPeakPow-

erModel

cA

AbstractFos-
silFuelPow-

erPlantModel

c Fossil-
FuelModel

cA

AbstractCon-
sumerModel

cA Abstract-
CostumCon-
sumerModel

cI Residen-
tialAver-
ageLoad-

CurveModel
I Time-

SeriesModel

c
ConstantDe-
mandModel

Fig. 6: Inheritance Tree of the currently implemented model
classes

for their subclasses. The interface for time series models
generated from external data is used in the residential average
load curve model.

B. A Parameter Set of Single Variables with Numeric Values

To make a variable be integrated as a parameter into the
GUI-functions the variable needs to be of type single variable
and included in a parameter set. The objects as well as the
models have an attribute of type parameter set which is a list
of single variables. Only those parameters can be visible and
optionally editable via the property window of the object, as
shown in Figure 3. To add a single variable to the parameter
set it needs to be specified by its name, by its (initial) value, its
physical unit, and two options, which are boolean values for
defining the variable to be visible and editable in the property
window. The name of a model parameter can be any string
but should be chosen in a meaningful way and fit the terms in
the model description. The value must be of the type numeric
value. Numeric value is a class created within RAPSim to deal
with real as well as complex numbers. It provides functions for
calculations as well as for conversion to the usual numeric Java
data types. For common numerical operations, like addition
or division, it is necessary to call the specific methods of the
object instead of the usual numerical operators, since operators
+ or / do not work for this data type. The physical unit needs
to be selected from the EnumUnit list which can be extended
if required.

C. Algorithms and Collections

Algorithms do all operations for grid-wide calculation, for
example a power flow analysis. The buses and paths of the
power flow are lists of object and do have a collection of
parameters within RAPSim. A collection is generally an aggre-
gation of several parameters of grid objects. As an example, a
grid topology analysis generates lists of buses and paths. Each
bus aggregates several objects. The collection builds then an
aggregated parameter set that holds the aggregated power of
all the objects. Collections work, according to their name, by
aggregating values from objects and can never write to objects.
That means the algorithm can use collections as input but must
return results to the objects directly. In RAPSim the user can
select from the implemented algorithms via the GUI. Newly
implemented algorithms are automatically integrated into the
menu including their description. The implementation of an
algorithm is more complex than writing a new model due to
their multiple dependencies on various data from grid object
models.

IV. MODEL IMPLEMENTATION IN RAPSIM

By showing two models in detail we demonstrate implemen-
tation of object models within RAPSim. From the scenario in
Figure 1 we present a model for a wind turbine and for a res-
idential consumer. The first model is based on a mathematical
model, in particular an equation with four parameters. The
second model is using time series data from an external data
source which must be adapted to the pace of the simulation
time. There are three main steps in implementing a model.

1) Selection of the appropriate abstract model class to be
extended and declare the name, description and icon for
the model.

2) Initialization of the variables including the options to be
visible and editable in the property window.

3) Definition of the update procedure for the variables
which is the core of the model.

For each of these three tasks there is a designated place
to implemented the code fragments. They are particularly
explained for the wind turbine example in the following.

A. Wind turbine model

This subsection exercises the implementation of a model
for wind turbines as shown in Figure 3. The output power of
any wind turbine is a function of the wind speed v which is a
parameter provided by the weather thread within RAPSim.
The icon in the center of Figure 3 shows a general form
of the power curve of wind turbines. The power production
characteristic P (v) of this wind turbine model is described by
the equation

P (v) =


0, v < vcutin, v > vcutout
Prated, vrated < v < vcutout
ec1(v−vcutin), vcutin < v < vrated.

(1)

Where, vcutin is the speed that the turbine starts working at,
vcutout , the wind speed at which the turbine stops working to
prevent damages. Between vrated and vcutout the wind turbine

generates the rated power. The curve between vcutin and vrated
can be generally fitted by any function. In Equation 1 this
is done by one parameter so that P (vrated) = Prated and
P (vcutin) = 1W . Parameters depend on the individual wind
turbine type. The data can be obtained from the producer or
must be measured directly. For simplicity, we implement a sin-
gle parameter version. The following code listings implement
Equation 1 in Java and add all required functions for model
administration in RAPSim.

t h i s . r a t e d P o w e r = new S i n g l e V a r i a b l e (
EnumPV . p o w e r P r o d u c t i o n O p t i m a l ,
t h i s . p o w e r P l a n t . ge tPeakPower ()) ;

t h i s . r a t e d P o w e r . p r o p e r t i e s . s e t (true , f a l s e) ;
t h i s . v a r i a b l e S e t . add (r a t e d P o w e r) ;

Listing 1: Definition of the rated power variable in the
abstract power plant model. This single variable, which
requires to be updated with the objects variable of the
same name, must be named according the EnumPV list.
The default options for variables defined in abstract classes
are visible true and editable false.

The specification of the variable rated power and current power
is done in the abstract power plant model, which manages the
update with their equally named counterparts in the object. The
(initial) value is loaded from the power plant object with the
getPeakPower method. This keeps the value preserved when
a different model gets selected.

12
13 / / i s i n i t i a l i z e d i n s u p e r c l a s s
14 / / p r i v a t e S i n g l e V a r i a b l e r a t e d P o w e r ;
15 / / p r i v a t e S i n g l e V a r i a b l e p o w e r P r o d u c t i o n ;
16 p r i v a t e S i n g l e V a r i a b l e c u t I n S p e e d ;
17 p r i v a t e S i n g l e V a r i a b l e r a t e d S p e e d ;
18 p r i v a t e S i n g l e V a r i a b l e cu tOutSpeed ;
19 p r i v a t e double c1 ;
20
21 p u b l i c UsualWindTurbineModel (

WindTurb inePowerP lan t p o w e r P l a n t) {
22 super (p o w e r P l a n t) ;
23 modelName = ” UsualWindTurbineModel ” ;
24 d e s c r i p t i o n = ” The d e l i v e r e d power i s r e l a t e d

t o t h e windspeed from t h e w e a t h e r t h r e a d .
Below c u t I n and above cu tO u t p r o d u c t i o n i s
0 , ” +

25 ” between r a t e d and cu tOu t i t i s t h e r a t e d
power and i n c r e a s e s e x p o n e n t i a l l y between
c u t I n and r a t e d . ” +

26 ” The e x p o n e n t i a l p a r t i s f i t t e d wi th one
p a r a m e t e r ’ c1 ’ so t h a t
exp [c1 * (r a t e d S p e e d−i nSpeed)] =
r a t e d P o w e r . ” ;

27 i c o n = new
ImageIcon (C l a s s L o a d e r . g e t S y s t e m R e s o u r c e (
” Data2 / WindTurbineUsualModel ICON . png ”)) ;

28 }

Listing 2: The class definition contains the variable
declaration, the constructor and defines other attributes.

Beside the rated power Prated the model requires three wind
speed parameters, vcutin, vrated, and vcutout. Those are of type
single variable to be accessible via the parameter set in the
GUI. They are initialized in the initVariableSet method. The
fitted parameter can be of type double. The model constructor

requires the associated power plant object as argument and
calls the super class constructor. Then the three arguments
name, description and icon are defined for model administra-
tion. Evidently, name and description should be meaningful.
The icon is recommended to be of type .png and 120 times
80 pixels wide.

31 @Override
32 p r o t e c t e d void i n i t V a r i a b l e S e t () { / / c a l l e d i n

c o n s t r u c t o r o f s u p e r c l a s s
33 t h i s . r a t e d P o w e r . p r o p e r t i e s . s e t (true , t rue) ;
34 t h i s . p o w e r P r o d u c t i o n . p r o p e r t i e s . s e t (f a l s e ,

f a l s e) ;
35
36 t h i s . c u t I n S p e e d = t h i s . i n i t V a r i a b l e (” cu t−i n

speed ” , new NumericValue (1 . 0) ,
EnumUnit . me te rPerSecond , true , t rue) ;

37 t h i s . r a t e d S p e e d = t h i s . i n i t V a r i a b l e (” r a t e d
speed ” , new NumericValue (3 . 0) ,
EnumUnit . me te rPerSecond , true , t rue) ;

38 t h i s . cu tOutSpeed = t h i s . i n i t V a r i a b l e (” cu t−o u t
speed ” , new NumericValue (1 0 . 0) ,
EnumUnit . me te rPerSecond , true , t rue) ;

39 }

Listing 3: The method initVariableSet() is called in the
constructor of the super class.

The method initVariableSet is called in the constructor of the
super class. It contains modification of the options for the
parameters predefined in the super-classes, and initialization
of the variables.

41 @Override
42 p u b l i c vo id u p d a t e V a r i a b l e s (G r e g o r i a n C a l e n d a r

c u r r e n t T i m e , Weather wea ther , i n t
r e s o l u t i o n) {

43
44 double windSpeed = w e a t h e r . getWindSpeed () ;
45
46 i f (windSpeed<c u t I n S p e e d . ge tVa lueDoub le () | |

windSpeed>cu tOutSpeed . ge tVa lueDoub le ()) {
47 t h i s . s e t P o w e r P r o d u c t i o n (new NumericValue (0 . 0)) ;
48 } e l s e i f (

windSpeed>r a t e d S p e e d . ge tVa lueDoub le () &&
windSpeed<cu tOutSpeed . ge tVa lueDoub le ()) {

49 t h i s . s e t P o w e r P r o d u c t i o n (t h i s . ge tRa tedPower ()) ;
50 } e l s e i f

(windSpeed>c u t I n S p e e d . ge tVa lueDoub le () &&
windSpeed<r a t e d P o w e r . ge tVa lueDoub le ()) {

51 c1 = Math . l o g (r a t e d P o w e r . ge tVa lueDoub le ()) /
(r a t e d S p e e d . ge tVa lueDoub le ()
−c u t I n S p e e d . ge tVa lueDoub le ()) ;

52 NumericValue pValue = new
NumericValue (Math . exp (c1 * (windSpeed−
c u t I n S p e e d . ge tVa lueDoub le ()))) ;

53 t h i s . s e t P o w e r P r o d u c t i o n (pValue) ;
54 }
55 }

Listing 4: The method updateVariables contains the main
calculations for the model.

The method update variable is executed at each time step
within the model update. It needs the arguments about time
and weather conditions. The calculation of the c1 constant is
redone each time step to capture parameter modifications via
the GUI. Values of the predefined parameters are rounded to
four digits and then forwarded to the associated object.

B. Model for Residential Average Loads
Residential loads in the distribution grid are often modeled

statistically as averaged load profiles. Such models can be
easily evaluated with measured data from a distribution feeder
and are commonly used for evaluations of other models,
e. g., in load shifting studies like [18], [19]. The average
German load profiles H0 as used in [18] are accessible within
RAPSim through a consumer model. The German Federal
Association of Energy and Water Industries (BDEW) provides
this profile, called H0 in a 15-minute resolution for the average
electricity consumption of a norm German household. The
dataset includes different profiles for working days, Saturdays
and for Sundays (also valid for public holidays) as well as
for the different seasons Winter, Summer and transition (for
Spring and Autumn). The annual energy consumption of this
average house is scaled to 1000kWh. The residential average
load curve model makes these data usable within RAPSim.
The necessary functions are:

• Reading the data file into an array.
• Selecting the respective time line for the currently simu-

lated season and day of the week.
• Getting the corresponding value according to current

simulation time.
• Aggregating or splitting values according to the simula-

tion step size.
• Scaling the value according to the annual energy usage

of the house, which is the only editable variable of the
model.

There are many Java libraries which provide functions for
the import of CSV files including time series. The Java.io
package is used in the residential average load curve model.

V. CONCLUSION AND FUTURE WORK

This paper described the main structure of RAPSim and
gave instructions on how to extend the simulation by im-
plementing user-specific models of renewable or distributed
energy sources and consumers. The main feature of RAPSim
is the simulation and aggregation of time depending power
profiles (of consumption and generation) down to minutes
resolution. The effort for the user on model implementation is
kept small by a systematic use by abstract classes that handle
all (internal) functions and by providing a general weather
and climate simulation thread. The software design clearly
separates the modeling of the grid objects from the power
grid simulation. The simultaneous use and simple exchange of
different models for the same type of object is easily possible.
RAPSim supports the implementation of user specific models
by full integration into the GUI. New implemented models are
available after compiling the associated object.

The next planned steps include the implementation of ad-
ditional models (e. g., such as connected diesel, wind and PV
systems [20]) and the improvement of the provided models,
e. g., for statistical weather simulation or residential demand.
Further efforts will be done to reduce the implementation effort
of algorithms for power system simulation. Improvements of
usability are a permanent aim within the software project.

REFERENCES

[1] M. D. Ilic, “From Hierarchical to Open Access Electric Power Systems,”
Proceedings of the IEEE, vol. 95, pp. 1060–1084, May 2007.

[2] P. Palensky, E. Widl, A. Elsheikh, and S. Member, “Simulating Cyber-
Physical Energy Systems: Challenges, Tools and Methods,” IEEE Trans-
actions on Systems, Man, and Cybernetics: Systems, vol. 44, pp. 318–
326, Mar. 2014.

[3] M. Pöchacker, A. Sobe, and W. Elmenreich, “Simulating the smart grid,”
in IEEE PowerTech, (Grenoble, France), June 2013.

[4] M. Pöchacker, T. Khatib, and W. Elmenreich, “The Microgrid Simulation
Tool RAPSim: Description and Case Study,” in IEEE Proceedings of
ISGT Asia 2014, (Kuala Lumpur), pp. 287–292, IEEE, May 2014.

[5] R. D. Zimmerman, C. E. Murillo-Sanchez, R. J. Thomas, C. E. Murillo-
s, and R. J. Thomas, “MATPOWER’s extensible optimal power flow
architecture,” in 2009 IEEE Power & Energy Society General Meeting,
no. x, pp. 1–7, IEEE, July 2009.

[6] C. A. Canizares and F. Alvarado, “UWPFLOW: continuation and direct
methods to locate fold bifurcations in AC/DC/FACTS power systems,”
University of Waterloo, 1999.

[7] H. Bindner, O. Gehrke, P. Lundsager, J. C. Hansen, and T. Cronin,
“IPSYS–A simulation tool for performance assessment and controller
development of integrated power system distributed renewable energy
generated and storage,” WREC VIII, Denver, Colorado, 2004.

[8] S. Cole and R. Belmans, “MatDyn, A New Matlab-Based Toolbox
for Power System Dynamic Simulation,” IEEE Transactions on Power
Systems, vol. 26, pp. 1129–1136, Aug. 2011.

[9] K. Anderson, J. Du, A. Narayan, and A. E. Gamal, “GridSpice: A
distributed simulation platform for the smart grid,” 2013 Workshop on
Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES),
vol. 3203, no. c, pp. 1–5, 2013.

[10] D. P. Chassin, K. Schneider, C. Gerkensmeyer, S. Member, A. W.
Gridlab-d, K. Schneider, C. Gerkensmeyer, and A. W. Gridlab-d,
“GridLAB-D: An Open-source Power Systems Modeling and Simula-
tion Environment,” in 2008 IEEE/PES Transmission and Distribution
Conference and Exposition, pp. 1–5, IEEE, Apr. 2008.

[11] E. Widl, P. Palensky, and A. Elsheikh, “Evaluation of two approaches
for simulating cyber-physical energy systems,” 38th Ann. Conf. on IEEE
Industrial Electronics Society (IECON), pp. 3582–3587, Oct. 2012.

[12] S. Schütte, S. Scherfke, and M. Sonnenschein, “Mosaik - Smart Grid
Simulation API - Toward a Semantic based Standard for Interchanging
Smart Grid Simulations.,” in SMARTGREENS, pp. 14–24, 2012.

[13] M. D. Ilic, U. A. Khan, and M. D. Ili, “Modeling future cyber-physical
energy systems,” in 2008 IEEE Power and Energy Society General
Meeting - Conversion and Delivery of Electrical Energy in the 21st
Century, pp. 1–9, IEEE, July 2008.

[14] P. Oliveira, T. Pinto, H. Morais, and Z. Vale, “MASGriP - A Multi-Agent
Smart Grid Simulation Platform,” 2012.

[15] T. K. Wijaya, D. Banerjee, T. Ganu, D. Chakraborty, S. Battacharya,
T. Papaioannou, D. P. Seetharam, and K. Aberer, “DRSim: A cyber
physical simulator for Demand Response systems,” in 2013 IEEE Inter-
national Conference on Smart Grid Communications (SmartGridComm),
pp. 217–222, IEEE, Oct. 2013.

[16] A. Sobe and W. Elmenreich, “Smart Microgrids: Overview and Out-
look,” in Proceedings of the GI INFORMATIK Workshop on Smart
Grids, no. 1, (Braunschweig), 2012.

[17] A. Monacchi, D. Egarter, W. Elmenreich, S. D’Alessandro, and A. M.
Tonello, “GREEND: An energy consumption dataset of households in
italy and austria,” in Proc. IEEE International Conference on Smart Grid
Communications (SmartGridComm’14), (Venice, Italy), 2014.

[18] S. Gottwalt, W. Ketter, C. Block, J. Collins, and C. Weinhardt, “Demand
side management - A simulation of household behavior under variable
prices,” Energy Policy, vol. 39, pp. 8163–8174, Dec. 2011.

[19] A.-G. Paetz, T. Kaschub, P. Jochem, and W. Fichtner, “Load-shifting
potentials in households including electric mobility - A comparison of
user behaviour with modelling results,” in 10th International Conference
on the European Energy Market (EEM), pp. 1–7, IEEE, May 2013.

[20] T. Khatib and W. Elmenreich, “Novel simplified hourly energy flow
models for photovoltaic power systems,” Energy Conversion and Man-
agement, vol. 79, pp. 441–448, Mar. 2014.

	Introduction
	The RAPSim Simulation Framework
	Software structure of RAPSim
	Smart Grid Objects and their Object Models
	A Parameter Set of Single Variables with Numeric Values
	Algorithms and Collections

	Model implementation in RAPSim
	Wind turbine model
	Model for Residential Average Loads

	Conclusion and Future Work
	References

