
Towards the Light - Comparing Evolved Neural Network

Controllers and Finite State Machine Controllers

Ágnes Pintér-Bartha, Anita Sobe, Wilfried Elmenreich
Institute of Networked and Embedded Systems

University of Klagenfurt/Lakeside Labs
Klagenfurt, Austria

{agnes.pinter-bartha,anita.sobe,wilfried.elmenreich}@aau.at

Abstract

In this paper, we compare two different evolvable con-
troller models based on their performance for a simple
robotic problem, where a robot has to find a light source
using two luminance sensors. The first controller is a fully
meshed artificial neural network. Though neural networks
are the most common type of controllers used in evolutionary
robotics, validating and understanding the resulting neural
network is problematic. In order to overcome this problem,
we implement also an evolvable Mealy machine, which is a
specific Finite State Machine. We show that both controllers
can be evolved with evolutionary algorithms to find a light
source placed outside the sensor range of the robots, but the
evolved neural network controller shows better performance
in speed and success probability, while the internal structure
of the evolved Mealy machine is more comprehensible.

1. Introduction

With simple controllers, complex behavior can be
achieved. A good example of these controllers are the Brait-
enberg’s vehicles [2], which use simple reactive architec-
tures and are capable of exhibiting behaviors like exploring
areas or approaching a light source. Such simple behavior
is desirable, but hard to design because of the complex
interactions and the emergent behavior of most systems.
A possible approach is to use evolutionary algorithms to
evolve controllers with the appropriate behavior. Two typical
evolvable representations for controllers are neural networks
and finite state machines (FSMs).

Neural networks are the most common type of controllers
used in evolutionary robotics. They are capable of perform-
ing complex computational tasks (e.g., pattern recognition)
or serve, e.g., as controllers for self-organizing robots [5].
However, validating and understanding the resulting neural
network is problematic because it is a black box model.
FSMs are easier to validate and are widely used for, e.g.,
pattern recognition [12] and machine control [3]. There have
been a few attempts to evolve FSMs that can be applied as

solution for practical tasks, one example being the control
of an aircraft [9].

In the work presented in this paper, we tested the two
types of controllers on a simple problem, similar to Brait-
enberg’s vehicle 3a [2]. The robot aims to find the light
source, which is placed in a rectangular area outside its
neighborhood. The robot has two luminance sensors that can
detect light sources within a particular sensor range. Based
on these sensor inputs, the robot’s controller steers the robot
via two motors each driving a wheel on the robot’s side. The
controllers are evolved with an evolutionary algorithm.

2. Controller Representation

We consider two simple representations for the controller:
(1) A three layer fully meshed recurrent neural network with
two hidden nodes and (2) a Mealy automata with 6 states.

2.1. Fully meshed recurrent neural network

We use a neural network with two input neurons, two
output neurons and two extra hidden neurons. From each
neuron, there are outgoing connections to every other output
and hidden neuron including itself. Furthermore, each neu-
ron has a bias, which defines the basic activation of a neuron.
Since the input neurons always reflect the current sensor
values, incoming connections and biases have no effect on
the input neuron’s output. All other neurons compute their
output as a function of their activation. The activation v

i

of
the i-th neuron is calculated using the connection weights
incoming from other neurons (w

ji

) and the bias b
i

of this
neuron:

�
i

=
X

j

w
ji

o
j

(k) + b
i

We used the following linear activation function to define
the output of a hidden or output neuron:

�(�) =

8
<

:

1 if x � 1
0 if x 0
x otherwise

,

10th International Workshop on Intelligent Solutions in Embedded Systems, 2012

~
83

2.2. Mealy machine

A Mealy machine [7] is a finite-state machine which
produces an output when a transition is being made from one
state to another one. On the other hand, the output values
of a Moore machine [8] are determined solely by its current
state. We have chosen the Mealy machine because it has
lesser or equal number of states than the equivalent Moore
machine.

The Mealy machine is a a 6-tuple (S, s0, I, O, �,�), where

• S is a finite set of states, with initial state s0
• I is a finite set of inputs
• O is a finite set of outputs
• � : S ⇥ I ! S is the transition function
• � : S ⇥ I ! O is the output function

In our case, we consider a deterministic FSM with a
complete set of transitions. We can represent the FSM with
a transition graph or a transition table.

The transition graph is a special case of directed labeled
graph where vertices are labeled by the states of S and
transition from s1 to s2 is labeled with input-output pair i/o
exactly when s2 2 �(s1, i) and o 2 �(s1, i). The transition
table stores information about transitions for all input value
combinations, specifying the next state and output associated
with the transition.

As pointed out by Kim in [6], mapping sensor inputs to
a Mealy machine leads to scalability issues, because it is
necessary to encode transitions for all possible combinations
of sensor input values for each state. The robot’s light
sensors have a value range of 0..70, producing an input
alphabet size of 71 · 71 = 5041. As the search space of
FSMs is very large, working with smaller input alphabet is
desired [1]. For this reason, we translate the values to binary
input values, using a mapping function with threshold values
for each input value (see Figure 1).

With the reduction to binary inputs, we have 2n transitions
per state, with n being the number of sensors. Making
a more fine-grained quantization of the input values, the
sensitivity to sensor inputs improves, but the number of state
transitions increases remarkably.

Figure 1. Model of FSM controller

3. Evolutionary algorithm

For evolving the controllers, we use an evolutionary
algorithm with a mixed elitist and roulette wheel selection
strategy [4]. We construct new generations by keeping the
best (15% of the population) and some randomly selected
(10%). The random selection has two biases towards select-
ing individuals with better ranking in fitness and towards
selecting individuals which maximize the overall diversity
of the population. The remaining positions of the population
are filled with offspring created by recombination (40%) and
mutation (30%). Some randomized new individuals (5%) are
also added. We set the population size to 50 and run the
evolution for 500 generations.

3.1. Generation of individuals

We experiment with two methods for generating new
random individuals: (1) We initiate all transitions randomly,
(2) We initiate transitions randomly, but decompose the
generation of FSM into two phases as described by Simão
et al. [10]. For latter, in phase one we create a connected
finite state machine, in phase two we add more transitions
until the required number of transitions are obtained.

3.2. Mutation operators

In the case of the neural network evolution, biases and
weights are mutated by adding a random value. The mutation
probability for each value is set to 10%. The network
structure is not subject to mutation, so any neural network
has the same number of nodes, biases and connections.

In the case of the Mealy machine, the following mutations
are considered:

• Mutate output associated with a transition
• Mutate next state associated with a transition
• Change init state
• Delete transition
• Mutate threshold values for input

If the initial state changes, we apply a transformation to
keep 0 as initial state. This is needed for better comparison of
FSMs. Transformation renames the new initial state to 0 and
makes necessary changes required because of this renaming.
The necessary changes are appropriate renaming the next
states of the transitions and switching next states and outputs
associated with new initial state with next states and outputs
associated with the 0 state.

Deleting a transition also needs further modifications: A
new transition is generated from the affected state to a ran-
dom next state. Input values associated with this transition
are kept and random output is generated.

84

3.3. Recombination

Recombination creates offspring based on two individuals
(“mother” and “father”). For the neural network, recombi-
nation is done on a neuron by neuron basis. Thus, for each
neuron an offspring gets either the father’s or the mother’s
version of the neuron at the same respective place. A neuron
is defined by its bias and its particular incoming connection
weights.

For the FSM, a random crossover point within the string
representing the state transition table is used. The first part
of the string is then copied from the father, the second from
the mother. The crossover, i.e., the point where the source
is switched can be any transition within the state transition
table.

3.4. Comparing individuals

The idea behind comparing individuals is to be able
to differentiate between similar individuals and have some
kind of measurement regarding how similar or different the
individuals are from each other. This measure is used by the
evolutionary algorithm in the random selection process. For
neural networks, the comparison value is built by calculating
the sum of absolute differences between the weight and
biasses associated with the nodes of a neural network.

Regarding comparing Mealy machines, we calculate the
Hamming distance between the string representation of the
machines.

The Mealy machine is encoded in a string in the following
way: first the initial state is encoded, then the thresholds
and finally, the transition table is encoded as a list of next
state (output list) in canonical order of input value pairs.
One example of the string representation of a 6-state Mealy
machine with initial state 0, thresholds 6 and 28 for the two
input values, is given in the following:

000,06,28,1(072,020),4(053,066),3(044,067),3(040,021),
5(053,091),5(100,099)-5(053,037),5(066,100),2(038,079),
5(082,051),2(051,031),3(067,086)-3(003,062),4(040,003),
2(041,070),1(029,061),0(007,059),3(026,002)-2(077,022),
2(096,052),3(007,070),1(018,000),1(068,006),1(063,087)

3.5. Fitness functions

We designed different fitness functions to see if rewarding
additional criteria helps evolving better controllers for our
problem. We used three different fitness functions: (1) Time
needed to reach the light and distance from the light source,
(2),(3) additionally reward area covered by the search. In
the case of (3), we try to favor spiral movements by giving
higher reward for cells visited closer to start point of the
robot. For counting area covered, the area is divided into
square shaped cells.

We defined the fitness functions in the following way:

F1 = 0.7 · time+ 0.3 · dist0,

where time counts the time consumed until light source
found, and

dist0(x) =

⇢
0 if dist � sensor range
dist otherwise ,

where dist is the distance between the robot and the light
source, and sensor range is a predefined distance from
which the robot can sense the light.

F2 = 0.5 · time+ 0.3 · dist0 + 0.2 · cells visited,

where cells visited defines the number of grid cells visited
by the robot. Grid cell size tested was 30 units.

F3 = 0.5 · time+ 0.3 · dist0 + 0.2 · w cells visited,

where w cells visited defines the number of grid cells
visited by the robot weighted by how far away the grid cell
is from the starting place of the robot.

w cells visited =

X

cell2cells visited

5.0

(5.0 + cell2
x

+ cell2
y

)

max cells
,

where cells visited is a set of visited grid cells, cell
x

and
cell

y

are the x and y coordinates of actual cell, max cells
is the maximum number of cells that can be visited by the
robot if it goes with maximum allowed speed.

Figure 2. Evolution of best individual’s fitness value over the

generations, averaged on 5 runs, using fitness function F1

4. Evaluation

4.1. Simulation settings

The simulated robot has two light sensors and its behavior
is controlled by the angular velocities of its two wheels.

85

Figure 3. Evolution of best individual’s fitness value over the

generations, averaged on 5 runs, using fitness function F2

Figure 4. Evolution of best individual’s fitness value over the

generations, averaged on 5 runs, using fitness function F3

Light sensors are capable of sensing the intensity of light
in an area defined by a sector of circle. The sensor angle is
set to 45 degrees, while distance from light source must be
less than 70 units. The overall map has a size of 200⇥ 200
units.

For running the simulations, we use FREVO [11]
(http://www.frevotool.tk), an open-source Java framework
for evolutionary computations.

4.2. Results

Our results show that both controllers can be evolved to
detect the light source, though the current representation
of Mealy machine does not perform as well as a simple
recurrent neural network controller.

Figures 2, 3, and 4 show how fitness values of the best
performing individual found in population change over the
generations when using different fitness functions. Each
figure compares five different representations. NN stands for
an evolved neural network controller, all others are evolved

FSMs. X1 stands for uniform crossover, X2 for one-point
crossover, Rand for a random generation of the FSM and
Simão for FSM generated using Simão’s method.

If we look at the behaviors of these individuals (see
Figure 5, 6), we can see that the evolved controllers show
similarities in their behavior.

(a) (b) (c)

(d) (e) (f)

Figure 5. Behavior of evolved neural network controllers. The

behaviors (a), (b), (c) were evolved with fitness function F1, (d) and

(e) with fitness function F2, and (f) with fitness function F3.

(a) (b) (c)

(d) (e) (f)

Figure 6. Behavior of evolved Mealy machine controllers. The

evolved behaviors show similarities for all fitness functions: (b), (c)

could be evolved with all fitness functions and generation modes

(random, “Sim

˜

ao”), (a) and (d) was evoled with random generation

of FSM, while (e), (f) “Sim

˜

ao” generation method. Last example (see

(f)) shows that FSM sometimes it is not enough sensitive to find the

light source.

Figure 7 shows the transition graph of the best Mealy
machine found after 500 generations using fitness function
F1, “Simão” generation and uniform crossover. We can
observe that after going from initial state 0 to state 1, the
FSM will loop between state 1 and state 2 until “detects”
the light. It is interesting that reading (0,1) or (1,0) will lead
as well to a loop in one state: FSM will be in state 3 or state
0 respectively. Reading (1,1) will eventually result in a loop
going from state 5 to state 2, then state 1, state 4 and back
to state 5.

86

This seems to be an interesting emergent behavior, with
some limitations regarding the robot’s trajectory. In the
case of Mealy machines, we can divide the controller’s
behavior into two parts: Searching for the light source,
and approaching the light source after detecting the light.
While searching for the light source, without detecting it,
a Mealy machine gets only (0,0) as input. As our FSM is
deterministic and complete, reading all the time (0,0) will
result in a loop between certain states of the FSM. A simple
case: if the FSM loops in one state all the time (producing
the same output), this can cause the robot to follow a circle
(when one of the wheels goes with higher velocity) or a line
(both wheels have the same velocity) path. Eventually, a one
state Mealy machine would learn the most successful circle
or line path. Also, because of the introduced thresholds, our
controller can detect the light only if the light intensity is
above the threshold. This can cause the controller to be
insensitive to the target, even when close to it, as can be
seen on Figure 6 (e) or (f).

Figure 7. Best evolved Mealy machine

5. Conclusion and Future Work

We have implemented an evolvable model of a Mealy
machine and evaluated its performance based on a simple
robotic problem. Our experiments show that both controllers
can be evolved to detect the light source, though evolution
leads to significantly different behaviors between neural
network controllers and FSMs. In general, the neural net-
work controllers showed better performance, however they
provide only a black box model of its operation. In the case
of FSM, we can get more insight on the evolved strategy
of the resulting controller, which supports analysis of the
behavioral spectrum of such a controller. Also, because of
necessity of reducing the input via threshold values, evolved
FSMs are sometimes not sensitive enough to changes of the

sensor input. In future work, we are planning to improve the
mapping between sensor inputs and FSM controller.

The implementation of the approach is freely available
as part of the FREVO tool (http://www.frevotool.tk). The
Mealy machine was implemented as an independent FREVO
component that can be used with other problems and opti-
mizers as well.

Acknowledgment

We would like to thank Elizabeth Dawes for proofreading
the paper. This work was supported by Lakeside Labs GmbH,
Klagenfurt, Austria, and funding from the European Regional
Development Fund and the Carinthian Economic Promotion Fund
(KWF) under grant 20214/21532/32604.

References

[1] K. Benson. Evolving Finite State Machines with embedded
Genetic Programming for Automatic Target Detection. In
Proceedings of the IEEE Conference on Evolutionary Compu-
tation ICEC, volume 2, pages 1543–1549. Defence Evaluation
and Research Agency Malvern, IEEE, 2000.

[2] V. Braitenberg. Vehicles: Experiments in Synthetic Psychol-
ogy. Bradford Books. MIT Press, 1986.

[3] E. Dumsong, N. Afzulpurkar, A. Tuantranont, and C. Pun-
yasai. A finite state machine for controlling untethered
scratch-drive micro-robot. In Robotics and Biomimetics,
2008. ROBIO 2008. IEEE International Conference on, pages
257–262, Feb. 2008.

[4] W. Elmenreich and G. Klingler. Genetic evolution of a
neural network for the autonomous control of a four-wheeled
robot. In Sixth Mexican International Conference on Artificial
Intelligence (MICAI’07), Aguascalientes, Mexico, nov 2007.

[5] I. Fehérvári and W. Elmenreich. Evolving Neural Network
Controllers for a Team of Self-Organizing Robots. Journal
of Robotics, 2010:1–11, 2010.

[6] D. Kim. A Quantitative Analysis of Memory Usage for Agent
Tasks. Electronic Engineering, (April), 2008.

[7] G. H. Mealy. A method for synthesizing sequential circuits.
Bell Systems Technical Journal, 34:1045–1079, Sept. 1955.

[8] E. F. Moore. Gedanken-experiments on sequential ma-
chines. Automata Studies, Annals of Mathematical Studies,
34:129153, Sept. 1956.

[9] N. I. Polikarpova, V. N. Tochilin, and A. A. Shalyto. Method
of reduced tables for generation of automata with a large
number of input variables based on genetic programming.
Journal of Computer and Systems Sciences International,
49(2):265–282, May 2010.

[10] A. Simão, A. Petrenko, and J. C. Maldonado. Comparing
finite state machine test coverage criteria. IET Software,
3(2):91, 2009.

[11] A. Sobe, I. Fehérvári, and W. Elmenreich. FREVO: A
tool for evolving and evaluating self-organizing systems. In
IEEE Self-adaptive and Self-organizing Systems Workshop
Eval4SASO’12, Lyon, France, September 2012. IEEE.

[12] M. Spichakova. Genetic Inference of Finite State Machines
Master thesis. Master thesis, Tallin University of Technology,
2007.

87

	Welcome from the Chairman
	Organization
	 Keynote
	In-network Adaptation of Scalable Video (H.264/SVC) Content

	 Oral Session 1
	A New Driving System towards Energy Efficient and Safe Driving Behaviour
	Computational Cost Estimation of a RTL JPEG Architecture with Powersim
	Rapid Prototyping of Image Processing Workflows on Massively Parallel Architectures
	Toward the design of a low cost reconfigurable real time Augmented reality system

	 Oral Session 2
	Fail-Safe Over-The-Air Programming and Error Recovery in Wireless Networks
	Android Based Body Area Network for the Evaluation of Medical Parameters
	Using Ethernet over Powerline Communication in Automotive Networks

	 Oral Session 3
	A Wireless Sensor Network Protocol for the OMG Data Distribution Service
	Using a Leaky Bucket Counter as an Advanced Threshold Mechanism for Event Detection in Wireless Sensor Networks

	 Oral Session 4
	EqMutDetect - A Tool for Equivalent Mutant Detection in Embedded Systems
	Optimizing Software Integration by ConsideringIntegration Test Complexity and Test Effort
	Efficient test methods for the system test of highly networked safety systems
	Design Guidelines for Smart Appliances

	 PhD Forum
	Towards the Light - Comparing Evolved Neural Network Controllers and Finite State Machine Controllers
	Evaluation of MANET Routing Protocols in a Realistic Emergency Response Scenario

	 Imprint

