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Abstract—Stability issues in the electric power grid originate
from the rising of renewable energy generation and the increasing
number of electric vehicles. The uncertainty and the distributed
nature of generation and consumption demand for optimal
allocation of energy resources, which, in the absence of sufficient
control reserve for power generation, can be achieved using
demand-response. A price signal can be exploited to reflect
the availability of energy. In this paper, market-based energy
allocation solutions for small energy grids are discussed and
implemented in a simulator, which is released for open use.
Artificial neural network controllers for energy prosumers can
be designed to minimize individual and overall running costs.
This enables a better use of local energy production from
renewable sources, while considering residents’ necessities to
minimize discomfort.
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I. INTRODUCTION

The rise in renewable energy installations and the in-
creasingly diffusion of electric vehicles is destabilizing the
supply and demand of energy in the grid. To compensate
for this problem, a modern energy infrastructure equipped
with a bidirectional communication infrastructure will soon
allow for the implementation of demand-side management
(DSM), i.e., the possibility for utilities to control the en-
ergy required by consumers in order to balance supply and
demand. Direct load control is based on the remote control
of selected loads in households and industries. Indirect load
control exploits a price signal to reflect fluctuations in the
availability of energy in the grid. Pricing schemes encourage
the operation of devices when energy cost is lower, fostering
awareness to increase conservation and efficiency [1] or to
automatically schedule the operation of selected devices to
off-peak periods [2]. Many existing studies deal with energy
management by finding allocations given the early and truthful
revelation of the agents’ preferences. However, the energy
management process typically has to deal with decentralised
resources controlled by self-interested agents. Accordingly, a
centralized scheduler would not be able to optimally cope
with the local perception and individual preferences of loads,
which becomes relevant especially in multi-user environments.
Electronic markets provide a framework for allocation of
limited resources within communities of distributed agents [3].
As opposed to classic scheduling based on optimization, agents
can keep their preferences private and act based on their local
view of the environment. Auctions can efficiently regulate the
access to a shared resource demanded by competing agents,
using a price to balance demand and supply in the system.
The energy price increases when demand exceeds supply

and decreases otherwise. Dynamic pricing allows for adaptive
control of distributed resources, in a way that is optimal locally
(according to the individual utility of agents) and globally (in
terms of social welfare), and leading to the emergence of global
coordination of autonomous controllers.

Auctions can be generally distinguished into single-sided
and double-sided auctions, according to the number of agents
allowed to submit offers per each side [4]. In this study
we focus on double auctions, as in presence of a small
number of traders they provide a more balanced trading
environment than monopolistic and monopsonistic ones. In
particular, continuous-double auctions were shown leading to
high market efficiency and quick convergence to the theoretical
equilibrium even with a few traders [5]. In spite of the
limited number of energy producers in dwellings, the benefits
of using a double auction for energy management becomes
more straightforward in rural scenarios and in presence of
storage units (e.g., batteries and electrical vehicles). Groups
of buildings can share a power and data infrastructure to
manage the overall community, given multiple families and
businesses, with different needs and expectations. Towards this
vision, Alam et al. [6] showed energy exchange leading to
an improved system efficiency and to the 65% reduction of
storage use. Ygge and Akkermans [7] present an early work in
scheduling household appliances using computational markets.
In PowerMatcher [8] device agents representing supply and
demand are organized in a hierarchy, so that the whole network
can be seen as a virtual prosumer (i.e., device and power
plant). Auctions are held between siblings, whilst the cluster
supernode concentrates offers from the lower level into one
that is delivered to the upper level. The root coincides with the
auctioneer agent, which manages the price formation for the
whole tree. A tree-based topology of computational markets
can be easily associated to the underlying power distribution
network, and it allows for reducing the complexity of the
auction. Although the attempt to create an energy market
targeted at both, load-level and the whole grid, there has been
little research into designing market policies considering in-
habitant’s behavior and preferences to minimize the discomfort
yielded by control strategies. DRSim [9] exploits real-world
datasets to extract inhabitants’ models describing consumption
attitude and activities, related to contextual factors such as
weather. Residents are described by a time-dependent price
sensitivity, an energy perception sensitivity representing user’s
energy awareness, as well as a DR communication sensitivity,
that is, the responsiveness to price changes.

Given such a background, the design of controllers for
energy producing and consuming appliances becomes increas-
ingly important. While trading agents for double auctions



have already received considerable attention, control strategies
need to consider system-level effects, which go beyond the
pure utility an individual agent assigns to a resource or task.
Besides aiming at the minimization of operational costs and a
better use of local resources, appliances should also consider
effects on users and other appliances, such as discomfort and
fairness. Moreover, cooperative behaviors might be able to
achieve a task with better performance or lower cost than
pure competitive market-oriented mechanisms. We address this
demand for self-organization by using ANN-based controllers
which are trained using evolutionary methods, based on the
methodology presented in [10]. The main contribution of this
paper is the introduction of a novel framework for enabling
household appliances and local generators to strategically
decide on trading energy across the building and with the
power distribution network. After reviewing existing auction
types and trading strategies we present a user-driven efficiency
measure extending existing market efficiency measures. In
Section III, we demonstrate an electronic market implemen-
tation for small, local energy grids. A discussion of such
approaches led to the implementation of a plugin for the
FREVO evolutionary computing framework [11], which we
release for open use1. The environment allows researchers for
experimenting self-organization in technical applications [12],
and in particular, we expect our plug-in to provide a validation
testbed for designers of energy management policies.

II. DOUBLE-SIDED AUCTIONS

Market-based allocation defines the dynamics under which
a set of agents A interact for the exchange of money and
goods. Computational markets allow for decentralised control
of resources, such as allocation and scheduling, in which self-
interested agents can make effective decisions based only on
local information. Thus, markets represent a scalable solution,
requiring minimal communication and computational effort
[3]. A double-sided auction allows for the many-to-many trade
of goods, between a seller si ∈ S and a buyer bj ∈ B
respectively advertising an ASK and a BID offer. Each offer
consists of a quantity q ∈ N+ of the traded resource and an
offered unit price p ∈ R>=0. Every trader has a private value
ψ for the good, denoting the worth for the agent based on
which a rational agent constrains its offers to avoid losses.
To prevent unreasonably high BID offers due to competitive
and possibly irrational behavior, the unit price is bounded to
a limit price pmax the market can accept. The market keeps
an order book O of all submitted offers and provides traders
with the current minimal (or outstanding) ask amin and the
current maximum (or outstanding) bid bmax, as well as the
price history for old transactions. The shared values amin
and bmax determine the market status, and are initialized to
amin = pmax and bmax = 0 at the beginning of each trading
day. A trading day is the period during which traders submit
offers to the market and for which unmatched offers persist in
the orderbook. The trading day takes place in trading rounds or
iterations, in which offers are submitted and ordered according
to their price (DESC for ASK offers and ASC for BID offers)
and arrival time. At each iteration, traders can submit new
offers to the market. The New York stock exchange policy
(also called spread reduction rule) constraints the market so

1http://frevo.sourceforge.net

that only offers that improve the current market status can
be accepted, which is, only a BID b > bmax and an ASK
a < amin can be accepted. A match occurs when there exists a
bid bj whose unit price pbj >= pai , ∀bj , ai ∈ O. The k-pricing
is commonly employed to compute a price between the bid and
ask offer prices so that the surplus can be distributed among
the participants. Specifically, given the ASK ai = 〈qi, pi〉 and
the BID bj = 〈qj , pj〉, a transaction θ occurs if and only if
pj >= pi and the price pθ = k · pj + (1 − k) · pi, with
k ∈ [0, 1]. This allows for controlling the assignment of the
surplus to the traders, for instance having it equally distributed
when k = 0.5. Depending on the auction type, matched offers
can be either committed to a transaction or queued until the end
of the trading day. The discrete-time double auction, also called
clearing house (CH) or synchronous, takes place over a time
interval in which traders can place offers, whilst transactions
are created at the end of the trading period. For buyers,
the mechanism implies waiting until the end of the period
before receiving traded resources. Therefore, non-delayable
resources are not suitable for such a kind of market. In the
NOBEL project a discrete-time double auction (DDA) is used
to implement a district energy market [13], in which traders
are required to predict their electricity demand/supply every
15 minutes. The continuous-time double auction (CDA) is a
discriminative price double-auction, meaning that the market
can clear offers each time a transaction is possible. A day-
ahead CDA was used in [14] to balance supply and demand
in a power network. Although the CDA leads to a higher
number of matched offers, it yields high volatility in the
market price, which can create dissatisfaction among traders.
To overcome this issue, the stable continuous double auction
(SCDA) implements a price adjustment mechanism [15]. The
uniform-price double auction (UPDA) combines advantages of
both CDA and DTDA to provide a non-discriminative price
while maximizing the number of matched offers as in the
CDA. Accordingly, offers are continuously matched, although
traders have to wait the end of the trading period to get the
transaction price and obtain the traded resource. Market-based
allocation mechanisms are commonly evaluated under the
market allocation efficiency. Decision policies are considered
efficient when they maximize social welfare, which is the sum
of utilities delivered to traders in a certain outcome. Therefore,
efficiency is maximized when all the possible profit is extracted
from the traders that operate in it. This is strictly related to
Pareto optimality, as a market is efficient when no agent can get
a better condition without worsening someone else. In effect,
as utility can be exchanged between agents through payments
the two measures coincide [4]. The efficiency can be computed
as the ratio between the actual surplus of all traders pra and
the maximum possible surplus pre that would be obtained in
a centralized and optimum allocation.

ε =
pra

pre
=
prab + pras
preb + pres

(1)

This translates into Eq. 1. The profit prb for a buyer j is
given by

∑
i∈N(ψbj − pij)qij with ψbj sensitivity price and

qij quantity bought from seller i at the unit price pij . The
profit prs for a seller i is given by

∑
j∈N(pij − ψsi)qij with

ψsi reservation price and qij quantity sold to buyer j at the
unit price pij . The actual overall profit pra is given by the
sum of the actual profits of all buyers and sellers, computed
as difference between the agent’s private value and the actual



unit price paid. The equilibrium profit pre is given by the sum
of equilibrium profits of all buyers and sellers, computed as
difference between the agent’s private value and the market
equilibrium price p0. The equilibrium price represents the
intersection of the supply and demand curve and indicates the
clearing price for the auction. Given the Walrasian tâtonnement
for which convergence to the equilibrium can be reached after
enough trading rounds even without intervening influences,
an approximation of the equilibrium price can be computed
using the last transaction price over a Marshallian path [16]
(i.e., the sequence of trades over the supply and demand
curves). This situation can be computed as the price of an
auction in which agents declare their private value for the
good being traded [17]. While the market efficiency captures
the traders’ profit, the user-centric efficiency was proposed to
assess responsiveness of services [18]. Each request to operate
a device can be associated to a utility function measuring
the value associated to such a resource. To avoid delays on
responsive devices, the valuation of the device should reflect
its immediacy, so that its utility decays to zero over time. For
a buyer bj ∈ B, Vj(r) = δ · Uj(r), with δ expressing the
discomfort received from the delayed allocation over the utility
Uj to receive r amount of resources. The user-centric efficiency
of a market is then given by the overall value delivered to the

users at the allocation time, that is
n∑
j=1

Vj .

III. HEMS: HOME ENERGY MARKET SIMULATOR

In this section we introduce the HEMS simulator, an
environment in which trading agents for energy management
can be designed and assessed. The simulator is a plug-in for the
FREVO evolutionary computing framework, a software tool
for the evolutionary design of distributed agents’ behavior.

A. Problem statement

The chosen market implements a uniform-price double auc-
tion where the trading day takes place over multiple duration-
less iterations. We selected an allocation interval of 1 second,
as this allows for responsively changing the planned scheduling
actions in presence of uncritical environment changes. The
trading day is also 1 second long, as this time guarantees
minimal waiting time for appliances before they are entitled
to run. We assume devices to truthfully report their energy
necessities, while rationally aiming at maximizing their profit.
This allows us to focus on the allocation strategy, as we do
not need to model uncertainty in the forecasted power demand
and supply. A balancing mechanism such as the one presented
in [14] could be employed to charge and discourage deviations
from forecasted demand and production. Transactions between
loads and local generators are priced under a k-pricing scheme
with k = 0.5, whereas transactions involving a grid agent Γ
are charged under the given tariffs: the feed-in price pbΓ and the
energy price psΓ (see III-B). Electrical devices can be distin-
guished according to the possibility to postpone their operation
(i.e., shiftable appliances) and to reduce their consumption
level (i.e., curtailable appliances). While we handle deferrable
devices in this study we do not exploit curtailable devices. The
power of matched offers is allocated at the end of the trading
day only if it is enough to operate the target device, or freed
otherwise. Partially matched offers resulting from different

BID and ASK quantities offered are split into new offers
with same unit price. However, Initial supply fragmentation
is prevented by matching only indivisible BID offers for
the first iterations, with exception of offers made from grid
agents. Similarly, all BID offers exceeding available supply
are removed at the the end of each iteration, as they could
be only partially fulfilled. The overall problem denotes the
minimization of the cost to supply each appliance and prevent
user discomfort (Equation 2), as well as the maximization of
the profit resulting from selling local generation (Equation 3):

minimize
∀bj∈B

∑
t∈T

∑
bj∈B

ptjq
t
j +

∑
bj∈B

δt′ (2)

maximize
∀si∈S

∑
t∈T

∑
si∈S

ptiq
t
i (3)

where t is the time, p is the energy price and q the quantity for
a specific state, whereas δ is the user discomfort attributed to
a t′ allocation delay. The optimization problem is also subject
to various constraints. The demand of a load depends on the
energy bought to be stored qt,sj and to operate qt,oj , which
translates into qtj = qt,oj + qt,sj ,∀bj ∈ B. The constraints ptj ≤
ψbj ,∀bj ∈ B and pti ≥ ψsi ,∀si ∈ S prevent agents from
trading with losses. Also, qtj − qti ≥ 0,with bj = si,∀bj ∈
B, ∀si ∈ S prevents traders from snatching up all power to
sell it back to the grid for an increased price. Constraint bθ 6=
sθ,∀θ ∈ Θ prevents prosumers from exploiting the difference
between ψbj and ψsi to self-provide energy, such as when
closing the connection on the grid agent to exploit incentives
on the feed-in tariff.

B. Agent-based modeling

This work assumes the presence of power grid agents,
each managing a connection with the main power grid (e.g.,
smart meters), along with a set of electrical loads and local
generators. Each grid agent is a truth-telling agent, which
simply exposes an energy tariff and a feed-in tariff modeling
the price per kilowatt-hour received for energy fed into the
grid. The highest amount of power that can be supplied by or
fed into the grid at a certain time is respectively modeled by
a power availability and a power capability function. Smart
electrical loads and local generators embed a controller to
trade towards profit maximization (See Fig. 1). Each agent

Operation model Generation model

ControllerUsage Generator

Reservation pricePrice sensitivity

Fig. 1. The agent structure

is described by a name, a credit and its expenses to operate.
An operation and a generation model describe energy demand
and production, controlled respectively under a sensitivity price
and a reservation price model. The price sensitivity model ψ
defines the maximum unit price the residents would be willing
to pay to operate the load at a certain time, that is the utility as-
sociated to the appliance. Therefore, the price sensitivity can be
used to compute the utility delivered to users upon completion
of the service operation. For an inflexible operation model, the
sensitivity price equals the market limit price. The reservation



price expresses production costs, influenced by technological
costs and storage (if employed). Unlike flexible generation
models (e.g., battery), an inflexible generation model (e.g.,
photovoltaic plant) is required to get rid of all produced power.
In this way, we can distinguish the inconvenience resulting
from device deferral, as this might affect either user comfort
or safety-critical applications. Generation models can either
import external time series of measured data or calculate the
production based on a generation model and a weather model.
At the time of writing we support importing of time series
of both wind and photovoltaic generation, and, additionally, a
model of photovoltaic (PV) plants based on the work presented
in [19]. A PV model is specified as the maximum peak
power the generator can supply and an efficiency factor that
can be used to model aging conditions. The plant is also
described through its position in terms of height, latitude
and longitude, and size in terms of square meters. Electrical
appliances provide multiple services, each described as an
operation model. Within an operation model, an appliance
profile describes the execution of a process on an electrical
machinery, that is, the coordinated execution of the system
components [20]. A service can be modeled as a sequence
of states, where each state σi is associated a peak power
level Pi ∈ N+ in Watts, as well as a duration di ∈ N+ in
seconds. A device start delay sensitivity χb in seconds models
the responsiveness under which appliances are required to start
from the time of request. The delay sensitivity is always 0 for
inflexible services, while it is necessary to model flexible user-
driven devices, such as a coffee machine. Device operations
result in a device begin discomfort δb proportional to the
overwaited time between the first offer and the beginning of the
operation. A state start delay sensitivity χs in seconds models
the effects resulting from a delayed start of intermediate states.
This affects the whole device operation, yielding a state begin
discomfort δs proportional to the overwaited time between the
ending of a state and the beginning of the next. For instance,
in a coffee machine the water heating state should always be
followed by the following states within a critical deadline,
as otherwise the whole operation would fail leading to a
terrible cold coffee. An interruption sensitivity χi defines the
severity under which device operation can be interrupted, that
is, the intra-state delay sensitivity. While certain continuous
devices might be interruptible (e.g., electric heaters), device
operation should be completed on a state-by-state basis. Device
operation is therefore a list of atomic states and handover
between devices should be achieved exploiting inter-state delay
sensitivity. Although a short interruption (e.g., in the order
of seconds) might not greatly affect user’s activities, it has
severe influence on the overall operation of the device resulting
in an interruption discomfort δi. A usage model models the
probability to operate an appliance at a specific time of the day.
In the simplest setting, we may have a static willingness value
ω∗ ∈ [0, 1] expressing the probability to start at a certain time
instant. The value can be defined statically for the whole sim-
ulation time or for time intervals (e.g., hourly, quarterly). The
probability Puse to have a transition from OFF to ON within
a time interval of length N is given by Puse = 1− (Phold)

N ,
which translates into Puse = 1− (1−ω∗)N and consequently
(1−ω∗)N = 1−Puse and ω∗ = 1− N

√
1− Puse. For operations

are not independent, we need a willingness decay λ ∈ R
updating the probability to run for the current time interval

(e.g., the same hour) as Puse = Puse(1 − λ)n, with n ∈ N
number of operations for the current interval. For instance
given Puse = 0.8 to use the coffee machine in the interval
9− 10AM , ω∗ = 1− 3600

√
0.2 = 0.00045 is the probability to

start at each second. After the first operation of the device, we
might use a decay λ = 0.5 which would produce Puse = 0.4
and consequently ω∗ = 1 − 3600

√
0.6 = 0.00014 for the

remaining time. Nevertheless, this simple usage model does
not express contextual factors and can not model situations
such as “two washing machine operations in a row might be
more common than just one, although three consecutive ones
are very unlikely to occur”. A more sophisticated usage model
based on machine learning techniques could be learned from
a consumption dataset. To this purpose, in [21] we show how
a Bayesian network can be used to model the usage behavior
of devices in an Austrian household.

C. Evolutionary approach

The design of appliance controllers follows the methodol-
ogy presented in [10]. The authors proposed the application
of evolutionary methods to train ANN-based controllers for a
team of robotic soccer players. The general idea of evolution-
ary algorithms (EA) is competing for limited resources [22].
Typically, EAs work with a pool of candidates, each containing
a genotype which fully encodes an agent’s behavior. The initial
population is filled with randomly generated candidates. In
order to find an appropriate solution we run our algorithm
through the defined number of generations. In each generation
we run the simulation of the HEMS for each candidate of
the population. The outcome of this simulation is a feedback
encoded as a fitness function. Elite candidates, which have the
highest fitness values, are kept in the population for the next
generation to fix the success behaviors. Additionally to the
elite, some candidates are selected randomly, where the likeli-
hood of selection is the higher, the better the fitness rank of a
candidate. In order to find better candidates we apply mutation
(variation operator) to the elite and selected representations.
This means modifying the weights of synaptic connections
of the neural network with a random small amount. Mutated
candidates are also selected for the next generation. Another
variation operator is recombination that is applied to pairs
of candidates which are randomly selected from the selected
representations. Two parent solutions are combined to produce
child representation(s) from them. Mutation, recombination,
and selection are used in each generation to drive the evolution.

D. Simulation interface

The HEMS tool acquires a scenario definition written in
the Javascript object notation (JSON) format, and consisting
in a weather model, connections with the power grid and a
model of each trader [23]. A graphical user interface is also
provided to display the simulation status and to plot charts
of the selected measures. As shown in Fig. 2, the top left
panel shows the logical topology of the power provisioning,
whereas the top right component lists the balance of each
appliance. The market view is meant to display the step by step
evolution of the market over the trading day, by showing the
state of the orderbook and pending transactions upon reception
of offers. At the end of the simulation, a report prompts the
simulation result, which includes all components used for the



Fig. 2. Graphical user interface of the FREVO plugin

fitness function. In the bottom, tabs report various metrics
characterizing the ongoing simulation. Charts and data can
also be exported to external files, as a picture, LaTeX TikZ
and comma-separated values (CSV) format. The price tab
displays the average grid energy price and the local energy
price. The latter is computed as the average energy price
for all running transactions, which is the grid tariff when no
energy is traded and it is equal to the feed-in tariff when
selling all produced energy to the grid. This denotes the
minimum price a device has to pay to start operating. The
power tab displays aggregate power produced and demanded
locally, while the self-consumption tab shows the exploitation
of local generation. Weather conditions such as the sun factor
are displayed in the weather tab. The market tab displays the
market efficiency of the current allocated devices. Since energy
bought from the grid is charged under grid tariffs, the efficiency
in presence of such transactions is 1 because pra = pre.
Consequently, we compute the efficiency only for transactions
between local generators and loads. The willingness tab shows
the trading willingness of agents, i.e., the tendency to buy or
sell energy over time. We also show the price sensitivity and
the reservation price of all agents in the next tab. Finally, the
operations tab reports all ran and running states per device, in
terms of delays and state interruptions.

IV. LEARNING DEVICE CONTROLLERS

The design of appliance controllers follows the method-
ology presented in [10] for the application of evolutionary
methods to train artificial neural network (ANN) controllers.
In HEMS, a controller for an energy prosumer is implemented
as a fully-meshed ANN. It is important to remark that when
an appliance is off its starting willingness is given by its
usage model, as ω = ω∗. After making a first BID offer,
ω = 1.0 reflects the rationality to complete the operation of
the device. This value is kept by the device agent to decide
whether to use the controller to formulate new offers. In this
way, after a first offer the agent is committed to pursue the
allocation of its future offers, so as to complete the operation
of the device. As for local generation, it is always used first to
satisfy local demand, as given by the operation model. Based

on the leftover amount of energy, which is negative when no
production is locally available to the agent, a trading tendency
τ ∈ [−1.0, 1.0] (−1 to sell, 0 to skip the trade and +1 to buy)
is computed. While the tendency is discrete for pure loads and
generators, this value becomes essential for prosumers, such as
batteries, where it can be used to reflect the amount of charge.
The controller is therefore queried each time the agent needs
to buy or sell energy, and it is based on the following structure:

• seller’s inputs which include the reservation price
(ψsi/pmax), the unit price of the outstanding ASK
(amin/pmax), the position in the ASK orderbook (with
1.0 denoting first and 0.0 the last), the percentage of
already matched ASK offer (P reservedi /P demandedi );

• context information meaning the time the decision is
being taken, i.e., the hour (midnight is 0.0, 11 pm
is 1.0), month (january is 0.0, december is 1.0) and
weekday (sunday is 0.0, weekdays are 0.5, saturday
is 1.0);

• trading tendency which include the offer importance
(1.0 for inflexible and 0.0 for flexible) and trading
tendency τ ;

• buyer’s inputs which model the delayed start tolerance
left (χbl/χ

b , with χbl initially equal to χb and progres-
sively decreased), the price sensitivity (ψbj/pmax), the
unit price of the outstanding bid (bmax/pmax), the
position in the BID orderbook, and the percentage of
already matched BID offer.

As noticeable, inputs are provided as relative values. Moreover,
the controller outputs a real value between 0 and 1, which is
then scaled to [−pmax,+pmax] using p = 2∗pmax ∗poutput−
pmax. A market threshold pth is then used to decide whether
to formulate a BID (p > pth), ASK (p < pth) or an opt out
otherwise. The primary goal of the controller is to minimize
costs, while selecting a price which rationally reflects the
presence of local production or the willingness to start and
complete an ongoing task. Since FREVO is using an absolute
ranking-based selection, there was no need to normalize fitness
to positive values or to squeeze fitness values into a given
number range. The formulated fitness function is:

F = R+ (δg ∗ Igrid)− C, (4)

The reward R is the sum of the utility delivered to users upon
completion of device operation, which is the price sensitivity
multiplied to the duration and power of each state described in
the device profile. The incoming Igrid resulting from feeding
energy into the grid is also considered. We then subtract the
costs (Eq. 5) weighted through various penalties δ.

C =δg ∗ Cgrid + δb
1

Bof

∑
bj∈Bo

f

dbj

δs
1

Bsf

∑
bj∈Bs

f

dsj + δi
1

Bof

∑
bj∈Bo

f

dcj+

δi(

B∑
j=1

vij +

S∑
i=1

vii) + δm(

B∑
j=1

vmj +

S∑
i=1

vmi)+

δl(

B∑
j=1

vpj +

S∑
i=1

vpi) + δn(

B∑
j=1

vnj
+

S∑
i=1

vni
).

(5)



Costs include: the energy purchased from the main energy
grid Cgrid, the discomfort resulting from user interaction (i.e.,
average delayed device start db, average delayed state start ds,
and average interruption time within states dc), the cost vm of
violating the NYSE market policy and the cost vp for trading
irrationally (i.e., with losses). For devices might have different
tolerances, we normalize each average to the delay tolerance of
each device. User discomfort results only from flexible loads
Bf , which were operated Bof and have more than a state Bsf .
For inflexible services all time-instants are considered in which
offers were not allocated, which results in vi and is penalized
through δi. We ran 250 generations with a population of 80
candidates, in a scenario with a main big supplier (grid) and a
small PV plant. We observed that the fitness tends to saturate
around 150 generations. The simulation converged upon a state
where the electrical loads learned to operate properly (without
interruptions and excessive delay before starting states) and
the generators are able to sell all of their produced energy.
Nevertheless, the selected market yields suboptimal results in
scenarios with multiple small generators, which would require
better coordination to fully supply big loads.

V. CONCLUSIONS AND FUTURE WORK

This paper discussed the market-based allocation of energy
resources in small local grids. We described the design and
implementation of a simulation tool allowing for modeling
trading behavior of loads and local energy generators. The
environment is part of the FREVO evolutionary computing
framework and can be used to experiment self-organization in
demand response scenarios. We are currently working towards
the inclusion of external appliance usage models, as identified
in [21]. Improvement is targeting various aspects of the tool,
such as weather and generation models. The ultimate goal is
providing a complete framework for the assessment of energy
management policies, targeting both efficiency and the comfort
of inhabitants. The tool is expected to foster discussion within
the demand response community, by constituting a testbed
where different market mechanisms and trading approaches
can be compared.
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