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Abstract— This paper presents a self-organizing robust clock
synchronization algorithm based on the Reachback Firefly Al-
gorithm, which is tailored for the use in wireless networks. We
adapt a fault-tolerant algorithm from wired networks to cope
with nodes deliberately feeding faulty clock readings into the
system. The presented algorithm achieves a tight alignment of
the firing phases of the non-faulty nodes, which supports duty
cycling, communication scheduling, and time synchronization.
Results show that the algorithm can cope with up to 1/5 non-silent
faulty nodes.

I. INTRODUCTION

Several algorithms for self-organizing time synchronization
in wireless ad hoc networks have recently been proposed in the
literature (e.g., [1]–[3]). All these algorithms assume that all
nodes strictly behave according to the given rules, i.e., there
are no faulty nodes. It is an open research issue as to how
such self-organizing systems behave in the presence of faulty
nodes and how to enhance given algorithms to make them
more robust against different types of faults.

This paper addresses this problem by proposing an algo-
rithm that is robust against strongly faulty nodes, namely
Byzantine nodes. Whereas robustness against Byzantine faults
is a well-studied issue in wired networks, it has received
less attention in ad hoc networks. The original definition
of a Byzantine fault is that a node can behave arbitrarily
[4]. This also means that a group of Byzantine nodes may
collude to perform the worst-case damage. The approach
presented in this paper establishes a network-wide internal
clock synchronization of an ad hoc network. In the scope of
this work we consider faulty nodes to broadcast messages with
a minimal inter-arrival time, but with the ability to corrupt an
ongoing transmission of a neighboring node. The possibility
of broadband jamming is not addressed herein.

Many existing synchronization algorithms require a struc-
tured network or are based on a centralized approach which
makes them prone to different attacks.

Asynchronous Diffusion [5] and Reachback Firefly Algo-
rithm (RFA) [1] are functional in unstructured and dynamic
wireless networks. Other protocols (e.g., Synchronizer Ring
(SR) [6], Secure Group Synchronization (SGS) [7]) provide
robustness against compromised nodes, but are either not
completely decentralized or cannot adapt to changing environ-
ments. A detailed elaboration and comparison among several
protocols is performed in [8].

Wood et al. [9] elaborate the possibility of faulty nodes per-
forming broadband jamming and propose approaches where

the network is able to recognize and exclude the jammed area
from routing and other communication-dependent functions.

Our approach is mainly based on the theory of self-
stabilizing pulse synchronization [10] to achieve synchrony.
RFA was figured out to be the most appropriate self-stabilizing
algorithm with respect to this work. As shown in our previous
work [2], the original RFA approach suffers from a worse
synchronization precision in the order of the average message
delay and further is not very robust against compromised
nodes. In this paper, we overcome this disadvantage through
a combination with a well-known distributed fault-tolerant
clock synchronization protocol named Fault-Tolerant Averag-
ing (FTA) [11].

II. SYSTEM MODEL AND DEFINITIONS

We model an ad hoc network using the bounded delay
model in a message-passing system represented by a graph
G = (V,E) [12] containing a set of n processors or nodes
pi with V = {pi | 0 ≤ i < n} where each pi is capable of
a broadcast primitive broadcasti(m). A node pi broadcasts
information to all neighboring nodes pj over a bidirectional
communication channel (i, j), if and only if (i, j) ∈ E,
i.e., pi and pj are neighbors. The channel (i, j) can suffer
from message loss due to collisions and interferences. The
pattern of connections between the nodes is the topology of
the system. Only connected topologies are treated in this paper.
We denote the communication network, in short network, to
be the collection of all connections in the system.

A broadcasted message m that is eventually delivered is
assumed to have a delay d(m) that is uniformly distributed
in the range d(m) ∈ [d, d + ε] where d defines the constant
part of the delay and 0 ≤ ε � d the delay jitter. We further
neglect the processing time. Each node is equipped with a
local drifting phase clock ϕi(t) which suffers from some drift
|ρi| ≤ ρ where ρ denotes the maximum drift rate among all
hardware clocks in the system such that Def. 1 holds.

Definition 1 (Drifting phase clock). Let T be the nominal
cycle duration in real-time. The phase clock ϕj(t) of node pj
is a phase variable that has the following properties:

1) ϕj : t 7→ [0, 1) = ϕj(t),
2) ∀t0, ∆t with 0 < ∆t� T · (1− ρ) and

∆ϕ = ϕj(t0 +∆t)− ϕj(t0) 6= 0:
• if ∆ϕ > 0: (1 + ρ)−1 ≤ T · ∆ϕ∆t ≤ (1− ρ)−1

• if ∆ϕ < 0: (1 + ρ)−1 ≤ T · 1+∆ϕ∆t ≤ (1− ρ)−1

3) and ϕj = 0 at the beginning of a cycle.
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We assume that the cycle duration T is short enough such
that the drift variation |dρi(t)/dt| for any pi is negligible.
That is, we have a constant drift model. The state P (t) of
a system comprising n nodes at real time t is defined as
P (t) = (ϕ0(t), ϕ1(t), . . . , ϕn−1(t)). A system is called phase-
synchronized for a given maximum phase deviation Φ at real
time t, if for all possible pairs of nodes pi, pj ∈ N , either
|ϕj(t)− ϕi(t)| ≤ Φ, or |ϕj(t)− ϕi(t)| ≥ 1− Φ.

We further say a node is non-faulty at time t if for time
t′ ≥ t, it behaves according to its algorithm, has a drifting
phase clock with a bounded drift, and has a negligible drift
variation. A node that is faulty is assumed to be Byzantine
faulty. A node is perfect if it is non-faulty and has no drift
(ρ = 0). A network is non-faulty at time t if all broadcasted
messages m at time t′ ≥ t are received by the neighboring
non-faulty nodes with a bounded delay of d(m) ∈ [d, d + ε]
time units. A network is perfect if it is non-faulty and for
each message m, d(m) = 0. A system is coherent at time
t if the network is non-faulty and there are at least n − f
non-faulty nodes where f > 0 represents our fault hypothesis
which defines the maximum number of possibly faulty nodes
such that the system is guaranteed to behave correct. A system
is fault-free at time t if the network is non-faulty and all n
nodes are non-faulty. A network is k-connected, if there exist
at least k disjoint paths between any two non-faulty nodes. A
network with diameter 1 is called fully-meshed.

III. PROBLEM STATEMENT

A system solves the self-stabilizing phase synchronization
problem (in short SSPSP) if the following two conditions hold:
• Convergence: Starting from an arbitrary system state, the

set of non-faulty nodes of a fault-free system reaches a
phase-synchronized state after a finite amount of time.

• Closure: If P (t0) is a phase-synchronized state of the
system at real-time t0, then ∀t ≥ t0,
1) the state P (t) of a coherent system at real-time t is a

phase-synchronized state, and
2) each (non-faulty or faulty) node broadcasts at most

one message in any interval [t, t+ T · (1 + ρ)].
Informally, the goal of an algorithm solving the SSPSP

is to reach a phase-synchronized state in a fault-free system
which is then maintained even in a coherent system. Note
that we sometimes say that a network achieved synchrony
which means that it entered a phase-synchronized state. The
second closure condition ensures that even faulty nodes do
not broadcast more than one message during one cycle. This
is feasible since we assume that faulty nodes do not perform
jamming or Sybil attacks [13]. Nevertheless, we take into
account that a message from a faulty node can disrupt a
message from another node.

IV. ROBUST SYNCHRONIZATION

The robust synchronization approach is based on two algo-
rithms, namely FTA [11] and a robust version of E-RFA [2].
First, the robust E-RFA (R-RFA) is presented and then FTA-
RFA as a simple combination of R-RFA and FTA is devised.

A. Enhanced Reachback Firefly Algorithm (E-RFA)
E-RFA requires that every node pi implements a phase clock

ϕi and adheres to the following rules: 1) At the end of every

cycle, pi broadcasts a synchronization message m with some
random offset containing its actual phase ϕi(t) (Pre-emptive
message staggering), and 2) based on the set of possible out-
of-order gathered messages M = {m1,m2, . . . ,mk} during a
complete cycle, pi adjusts its clock through a phase advance ∆
as a function of M and a pre-defined constant coupling factor
α by setting the initial phase of the next cycle exactly to ∆
(Reachback response). The random offset is assumed to be
constrained within some pre-defined minimum and maximum
relative message staggering delay rminmsd and rmaxmsd . Upper and
lower bounds of these delays are presented in [2].

The calculation of ∆ = f(M,α) is presented in Alg. 1 in
Line 9-14. For the case of two nodes, convergence of E-RFA
is theoretically analyzed in [2]. Therein, also upper and lower
bounds for α are presented. Simulation results for more than
two nodes with different topologies also show convergence but
without a formal proof.

B. Robust Reachback Firefly Algorithm (R-RFA)

R-RFA applies the fault acceptance mechanism of FTA:
Before a node calculates the phase advance, it first removes
the f lowest and f highest phase deviations from the message
set M . This is illustrated in Alg. 1. In the case of a distributed
system with a point-to-point communication, the assumption
of n ≥ 3f + 1 is adequate to guarantee convergence of FTA.
However, our system model allows a faulty node to destroy
the message broadcast of at most one non-faulty neighbor per
cycle (e.g., through short-time radio jamming). Consequently,
in the worst case, the f faulty nodes may always prevent f
non-faulty neighbors from broadcasting their messages. Thus,
if a node receives only 2f messages in the case of n = 3f+1,
we cannot assume that all messages originate from non-faulty
nodes. On this account, a node always has to remove the
f lowest and f highest phase deviations independent of the
number of received messages resulting in the fact that a
(5f + 1)-connected network is required.

Note that the phase deviations are symmetric and lie within
[− 1

2 ,
1
2 ]. On this account, we define the set S of symmetric

phase deviations based on the received phase information in
the message set M as

S(M) = {s(ϕj) | ϕj ∈M} (1)

where s(ϕj) is the symmetrization function of ϕj with

s(ϕj) =


ϕj if ϕj < 1

2

ϕj − 2 if ϕj ≥ 3
2

ϕj − 1 else
. (2)

Let jmin = min∀ϕj
{j | s(ϕj) = min(S)} and jmax =

max∀ϕj{j | s(ϕj) = max(S)} be the smallest and greatest
array indices of the subset of phase deviations that have the
same minimum and maximum symmetric phase deviation.
Note that the algorithm uses the array indices to refer to the
distinct received phases. This does not mean that each node
requires a unique identifier which defines our algorithm to be
anonymous. Consequently, we define the following function:

reduce(M) = M \ {ϕjmin
, ϕjmax

}.



Algorithm 1: R-RFA: code ∀pi : 0 ≤ i < n, n ≥ 5f + 1

Init: M := ∅, ∆i := 0, ϕi := 0,1
offseti := random(rmax

msd − r
min
msd) + rmin

msd

upon event ϕi(t) = 1− offseti do // preponed tx2
trigger broadcasti(ϕi(t)) // tx current phase3

upon event recvi(ϕj) from pj do // rx sync-message4
add (ϕi(t) + 1− ϕj) to M5

upon event ϕi(t) = 1 do // threshold reached6
ϕlast := δlast := ∆i := 0 // clean up7
reducef (M) // introduce robustness8
for each ϕj ∈ M in increasing order do // E-RFA9

if ∆i + ϕj < 1 and ϕlast + δlast < ϕj then10
δlast := min(1, (ϕj + ∆i) · α)− (ϕj + ∆i)11
∆i := ∆i + δlast12
ϕlast := ϕj13

ϕi(t) := ∆i // Apply reachback response14
offseti := random(rmax

msd − r
min
msd) + rmin

msd15
M := ∅16

Since we want to remove a set of lowest and highest devi-
ations, we use reducef to denote the f -fold iteration of the
function reduce.

Our experimental studies [8] show that this approach likely
converges in the presence of simple omission failures, if the
parameters are correctly chosen according to the upper and
lower bounds introduced in [2].

However, if the faulty nodes act in an adversary manner,
they are always able to prevent the system from converging.
For instance, consider the configuration in Fig. 1. Therein,
a group of nodes is already synchronized and node pi is
outside the group. Assume that pi has a higher drift (i.e., pi
is much faster) compared to the other nodes in the group and
consequently diverges from the group. Assume f = 1 and let
pf be a Byzantine node which transmits a message to each
node in the group in each round with the information as it
would be situated exactly c phase units in front the group.
Further let ∆i be the phase advance performed by node pi
in some round. Then pf can chose a different c > 1/L for
each node of the group such that the phase advance ∆g of
all these nodes is the same and equals ∆i. This leads to the
fact that the phase difference between each group node and pi
never changes over time and convergence is never achieved.
However, even the closure condition does not hold in a simple

Fig. 1. Demonstration of a configuration where R-RFA will never converge
in a coherent system for all admissible executions.

coherent system where all faulty nodes behave correct.

Corollary 1. In any coherent system with a fully-meshed
network comprising n ≥ 5f + 1 nodes for some f > 0 where
all faulty nodes behave correct, Alg. 1 cannot maintain the
closure condition of SSPSP. [8]

Thus, if the algorithm maintains the convergence condition
in a fault-free system, the nodes will periodically enter a
phase-synchronized state, keep therein for some time, and then

Algorithm 2: FTA-RFA: code ∀pi : 0 ≤ i < n, n ≥ 5f+1

Init: M := ∅, ∆i := 0, ϕi := 0,1
offseti := random(rmax

msd − r
min
msd) + rmin

msd

upon event ϕi(t) = 1− offseti do // preponed tx2
trigger broadcasti(ϕi(t)) // tx current phase3

upon event recvi(ϕj) from pj do // rx sync-message4
M := M ∪ {ϕi(t) + 1− ϕj}5

upon event ϕi(t) = 1 do // threshold reached6
ϕlast := δlast := ∆i := 0 // clean up7
ftaset := M ∪ {1} // copy set for FTA concept8
reducef (M) // introduce robustness9
devmax := max(S(M))10
devmin := min(S(M))11
dev := max(devmax − devmin, |devmax|, |devmin|)12
if dev ≥ 1/L then // execute E-RFA13

for each ϕj ∈ M in increasing order do14
if ∆i + ϕj < 1 and ϕlast + δlast < ϕj then15

δlast := min(1, (ϕj + ∆i) · α)− (ϕj + ∆i)16
∆i := ∆i + δlast17
ϕlast := ϕj18

else // execute FTA19
∆i := −avg(S(reducef (ftaset)))20

ϕi(t) := ∆i // Apply reachback response21
offseti := random(rmax

msd − r
min
msd) + rmin

msd22
M := ∅23

become unsynchronized until the fastest node again comes
close to the other nodes.

C. Merging Fault-Tolerant Averaging and the Reachback Fire-
fly Algorithm

To maintain the phase-synchronized state, we extended R-
RFA by the FTA approach. The main advantage of the combi-
nation is that both algorithms calculate the clock adjustments
solely on the message set M . Furthermore, we can reuse the
formal results of FTA to determine the worst case precision.
In other words, R-RFA provides convergence with a coarse
synchronization precision in a fault-free system and FTA
maintains the closure condition with a fine precision in a
coherent system. Clearly, the coarse precision must be small
enough to validate the assumption of initially synchronized
nodes for maintaining synchrony with FTA, but must be large
enough to have enough time until all nodes switched to the
FTA approach. The inherent advantage of FTA compared to
RFA is that the precision is in the order of the delay jitter and
improves with an increasing number of nodes. In contrast,
the worst case precision of E-RFA or R-RFA is about the
maximum message delay and independent of the number of
nodes.

Alg. 2 illustrates the cooperation of both approaches.
Therein, we make use of the symmetrization function s(ϕj)
and the symmetrized set S(M) as defined in Equ. (1). The
switching condition in Line 13 depends on the maximum
deviation a node identified and a pre-defined threshold value L
named FTA convergence threshold. If the maximum deviation
exceeds 1/L, then the R-RFA approach is chosen. Otherwise,
FTA is chosen. The parameter L is defined by the worst case
scenario where the FTA approach may never converge. For
this, we first define the term of a Basic Rest Circle (BRC) in
graph G. Let P (pi, pj) be the set of all paths from pi to pj
with pi, pj ∈ V and pi 6= pj , and l(p) denotes the length of



a path or circle p. A BRC of G = (V,E) is a closed simple
path C = (p0, p1, . . . , pk, p0) that satisfies: ∀0 ≤ i < j ≤ k :
@p ∈ P (pj , pi) : l(p) < min(j− i, k+ 1− (j− i)). Let Cmax
denote the maximum BRC of G such that there is no other
BRC Ci with l(Ci) > l(Cmax).

Theorem 1. Let Cmax be the maximum BRC of a system. In
the case n ≥ 5f+1 for some f > 0, Alg. 2 may never converge
if the convergence threshold L ≤ max(l(Cmax), 4)/2 even if
the f faulty nodes behave correct. [8]

To incorporate the effect of inaccuracies and drift, we finally
set the FTA convergence threshold to L = max(l(Cmax), 4).
However, in the next section we will see that there exists
a tighter lower bound for L which was identified for ring
topologies but also applies to all topologies which contain
a maximum BRC Cmax with l(Cmax) > 0. Further bounds
on L that increase the probability of reaching synchrony are
devised in [8].

V. PERFORMANCE

We use the probabilistic wireless sensor network simulator
JProwler which is basically configured to simulate the behavior
of the Berkeley Mica Motes with the B-MAC protocol [14].
Some MAC-specific attributes are modified according to Ta-
ble I to simulate the behavior of an IEEE 802.15.4 MAC layer
with uniformly distributed message delay d(m) ∈ [2.2, 2.7] ms
in the case a message m is delivered. The backoff scheme
of CSMA/CA is deactivated due to its strong influence on
the delay jitter. The configuration of the transmission power
and noise is the same as originally implemented for the
Mica2 motes and corresponds to a transmission range of
about 25 m. JProwler simulates message collisions based on a
calculated SINR. Every node pi initially has a random phase
and a constant random drift-rate |ρi| ≤ ρ. Every simulation
configuration is performed 100 times with a virtual time
duration of at least 10000 s.

g2 g3 g4 g5 g6 g7g1 g8 g9 g10

Fig. 2. Example of a grouped multi-hop topology (faulty nodes are depicted
as filled red circles).

All simulations are based on a grouped multi-hop network,
consisting of several groups ordered in a chain-like topology
such that any two nodes within the same or neighboring group
are neighbors. Figure 2 visualizes this topology with k = 10
groups gi, 1 ≤ i ≤ k, each having a group size of g = 8
nodes, and thus realizes an 8-connected network. To avoid a
high rate of message collisions due to noise and interference,
two neighboring groups are geographically situated 15 m apart.
Nodes within the same group are situated at most 1 m apart.
The parameters used for all simulations are shown in Table I.
Other topologies and metrics are evaluated and discussed
in [8].

A. Simulation of a Fault-Free System
Figure 3 compares the phase deviations (denoted as group

spread) by the use of box plots between R-RFA and FTA-
RFA in grouped multi-hop networks with different group sizes
for a fault-free case (f = 0). All simulated systems entered

TABLE I
GENERAL SIMULATION CONFIGURATION

Parameter Symbol Value
Granularity 1µs
Transmission time ttx 1 ms
Minimum tx waiting time d− ttx 1.2 ms
Delay jitter ε 0.5 ms
Cycle duration T 1 s
Maximum drift rate ρ 100 ppm
Maximum phase deviation Φ 0.01
Coupling factor α 1.01
FTA convergence threshold L 4

a phase-synchronized state with, in average, 200 rounds (1
round equals 1 second in the simulation). Independent of the
group size, there is a significant difference between the phase
deviation for R-RFA and FTA-RFA. This is due to the fact
that R-RFA is based on E-RFA [2], which cannot synchronize
better than the maximum message delay in a single-hop
network. As shown in [2], the worst case precision in the fault-
free case of R-RFA in this network equals Π = 9 · 2.9 ms.
Figure 3(a) shows that this upper precision bound is never
exceeded, even in the presence of many message omissions
and collisions. The main advantage of R-RFA is the fact that
the nodes typically perform very small clock adjustments (in
our experiments in the order of some µs).

The convergence behavior of FTA-RFA (Fig. 3(b)) in this
network equals that of R-RFA, but in contrast to R-RFA,
FTA-RFA adjusts the nodes to the average of the received
phase information after synchrony is reached. Since incoming
messages are delayed by d and due to the fact that ε � d,
every node performs large clock adjustments in the order of
d, but globally the nodes will deviate only in the order of
ε except in the vicinity of the beginning and at the end of a
cycle. An increasing group size slightly improves the synchro-
nization precision due to the nature of FTA, but increases the
probability of message collisions until the precision degrades.
However, in the presence of high message omissions and
collisions, FTA-RFA is more robust than R-RFA with respect
to the phase deviation.

B. Simulation of a Coherent System

Faulty nodes now transmit different random values within
special ranges to the distinct neighbors (two-faced malicious).
Simulation results based on such a system yield estimations
about the robustness of the applied algorithm.

Recall that FTA-RFA requires at least a (5f +1)-connected
network, which is fulfilled by a grouped multi-hop network
with g = 8 for f = 1. If we assume that each node knows
the exact number of maximum neighboring faulty nodes fg
per group, our definition of a grouped multi-hop network
comprising k groups allows the presence of at most k·fg faulty
nodes (which may behave faulty only after convergence) with
the constraint of at most fg faulty nodes in each group. In
contrast, (5f + 1)-connected networks are resilient to at most
f faulty nodes. This means that in our topology example of
one faulty node in each group (fg = 1), all nodes of the border
groups assume f = 2 and the remaining nodes assume f = 3.

Simulation results of FTA-RFA in such a grouped multi-
hop topology are presented in Figure 4. Results regarding
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Fig. 3. Phase deviations in fault-free grouped multi-hop networks.

0

2000

4000

6000

8000

10000

12000

p
h

as
e

 d
e

v
i a

ti
o

n
 [

µs
]

.30 .20 .10rmsd
max =

(a) Phase deviation diagram

-6000

-5500

-5000

-4500

-4000

-3500

-3000

-2500

-2000

p
h

as
e

 a
d

ju
s t

m
e

n
t 

[µ
s]

.30 .20 .10rmsd
max =

(b) Phase adjustment diagram

Fig. 4. Quality aspects of FTA-RFA in a grouped multi-hop network with
one faulty node (f = 1) per group and 10 groups with group size g = 8.

rmaxmsd = 0.1 are significantly worse than results for rmaxmsd = 0.3
and rmaxmsd = 0.2 due to the increased number of message
omissions.

The average time to synchrony for the two other systems
is about 250 rounds. The phase deviations never exceeded
the upper bound for the worst case precision of FTA in the
fault-free case (9 · 0.7 ms) [2]. The average clock adjustment
is in the order of the average message delay (2.5 ms). The
results show that FTA-RFA provides a robust convergence and
a strongly improved precision even in the presence of two-
faced malicious faulty nodes.

VI. CONCLUSIONS

In this paper we propose FTA-RFA, a self-organizing syn-
chronization algorithm. Evaluations by simulation show that
it works well in (5f + 1)-connected networks in the presence

of at most f faulty nodes which may behave two-faced
maliciously but are not assumed to perform radio jamming
attacks or to collude in order to behave in an adversary manner.
The presented approach is best suited for the use in networks
suffering from significant communication delays but relatively
small delay jitter and provides a high probability of achieving
network-wide synchrony even in large multi-hop networks.

Future research will rely on the establishment of a robust
self-organizing drift-correction algorithm. A node may also
estimate the average message delay in order to combine
the advantages of both FTA and RFA, namely an improved
synchronization precision and small clock adjustment values.
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