
©IEEE, 2018. This is the author’s version of the work. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purpose or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component
of this work in other works must be obtained from the copyright holder. The definite version is published at IEEE International Conference on Industrial
Cyber-Physical Systems (ICPS) 2018.

Integrating Time-Triggered and Event-
Triggered Traffic in a Hard Real-Time System

Sascha Einspieler
KAI Kompetenzzentrum Automobil-

und Industrie-Elektronik GmbH
Villach, Austria

sascha.einspieler@k-ai.at

Benjamin Steinwender
KAI Kompetenzzentrum Automobil-

und Industrie-Elektronik GmbH
Villach, Austria

Wilfried Elmenreich
Networked and Embedded Systems

Alpen-Adria-Universität
Klagenfurt, Austria

wilfried.elmenreich@aau.at

Abstract—In industrial communications, there is a high de-
mand for flexibility as well as dependable and timely com-
munication. There are two main paradigms for setting up a
distributed real-time system, the time-triggered and the event-
triggered approach. While the time-triggered approach is more
rigorous and verifiable, the event-triggered approach is more
flexible but harder to prove.

In this paper, we present an approach of a distributed real-
time system that follows the time-triggered paradigm but is able
to operate in an event-triggered mode when the timing of the
particular tasks does not stay within the initial assumptions. The
system features an innovative on-the-fly monitoring mechanism
based on slot violations. This way, the system stays operable
while being able to inform about the mode change and therefore
a possible problem.

Index Terms—Real-Time, Monitoring, Time-Triggered, Event-
Triggered, Distributed System

I. INTRODUCTION

To provide organized bus access in distributed real-time net-
works, time-triggered communication is mainly used. Thereby,
each bus participant is granted bus access during defined
time slots. The number of bus participants and the data
interface configuration of time-triggered networks need to be
defined a priori which allows us to create a time-triggered
computation and communication schedule of the system. The
provided determinism avoids the possibility of collisions on
the shared bus. Such systems are usually very static in their
configuration and require tasks and communication to fulfill
limits on their Worst Case Execution Time (WCET) [1].
With a trend to use more complex software and hardware
for embedded systems, determining a hardbound for a task
WCET becomes a challenge [2]–[4]: Many state-of-the-art
microprocessors have complex caching and clocking strategies
that can significantly affect the performance of a single task.
Processors that implement dynamic frequency scaling can have
thermal effects causing the processor to change to an operation
with a lower clock frequency [5], [6].

If it is not possible to avoid hardware with such non-
deterministic performance or if a reliable WCET analysis
is not feasible, an innovative solution is needed. Thus, we
propose an approach with a fallback mechanism to recover
from timing violations using an event-triggered communication
style. This is in contrast to [7] where the recovery is based

on a restart of the time-triggered mode. Further, the proposed
approach differs significantly from existing approaches such
as FlexRay [8], which implements two separate channels for
either communication mechanism. Work by Obermaisser with
focus on flexible time-triggered communication [9] uses virtual
channels to add event-triggered traffic on a time-triggered
system. Thereby, these two modes are tightly integrated with
each other at protocol level and switched dynamically. To
add a level of determinism to standard IEEE 802.1 and IEEE
802.3 Ethernet networks, a family of standards have been
developed by the TSN Task Group [10] since 2012. This novel
technology named Time-Sensitive Networking (TSN) applies
various mechanisms to separate best-effort and real-time data
frames using timing based prioritization.

The proposed system provides the following advantages:

1) It implements a time-triggered approach, allowing rigorous
proofs concerning the time-triggered operation,

2) it is able to operate in an event-triggered, best-effort mode
to solve problems with unpredicted timing violations,

3) and it comes with a monitoring system notifying an
operator how well a system stays within its time-triggered
operation or if there already have been some timing
violations during system operation.

Possible application domains for the approach lie in real-
time systems with the requirement for using state-of-the-art
microprocessors with a good average performance but hard to
prove WCETs. Examples could be applications with a high
computational effort such as image processing or systems
requiring an operating system such as embedded Linux.

The remaining paper is organized as follows: In Section II a
brief overview of currently available bus setup and monitoring
concepts is given. In Section III, the assumptions and require-
ments for the presented mechanisms are described. Section IV
presents the slot violation fallback mechanism. Its operational
behavior is shown using various communication scenarios.
Based on this mechanism, Section V presents an additional on-
the-fly monitoring mechanism. It enables an inherent analysis
of the bus communication using a slot and process rating
scheme. Section VI discusses the benefits and drawbacks of
the presented mechanisms. Section VII concludes the paper
and gives an outlook on future work.

II. STATE OF THE ART

In time-triggered networks, the possibility of a collision
on the shared medium is minimized by granting every bus
member access only for distinct time slots. This access scheme,
also referred to as Time Division Multiple Access (TDMA), is
usually organized by a time schedule which is partially or fully
owned by the bus participants [11]. In popular time-triggered
protocols like FlexRay [8] or TTP/C [12], the method for
setting up the static schedule is named Message Descriptor List
(MEDL). Within the MEDL, the TDMA rounds are organized.
One round consists of multiple slots where each time slot is
assigned to a bus participant. During its slot, the bus member
must transmit a data frame that may contain several messages.
Multiple rounds form the so-called cluster cycle.

As long as the slot boundaries are not violated, a flawless
communication can be ensured. However, in case of a slot
violation, a transmission overlap is possible which may lead to
a data corruption of the following slots. TTP/C prevents this
malfunction by use of a bus guardian [12] - i.e. bus members
are not allowed to send data outside of their assigned slot to
avoid information loss. Some protocol-specific mechanisms
provide the possibility to grant preference to the transmission of
important data. Such priority mechanism is used, for example,
in TTCAN [13] where a message with higher priority interrupts
a lower prior message. A retransmission of the interrupted
message is not allowed since it may lead to further conflicts
and thus, partial information loss. In TSN, best-effort and
real-time data frames are separated using TDMA and Virtual-
LAN (VLAN) priority slots IEEE2016b Each network routing
device applies a time-aware scheduler which is responsible to
forward real-time data frames at distinct points in time within
a cycle. Guard bands are introduced as a mechanism to prevent
best-effort frames from extending into the following real-time
data slot. Consequently, to compensate the reduced transmission
time for best-effort frames, a frame pre-emption IEEE2016,
IEEE2016a mechanism is applied.

The reasons which lead to a slot violation are manifold. They
may originate from the firmware or software implementation,
the hardware, or the environment. Increased code execution
times caused by changing environment or CPU temperatures are
mainly attributed to a badly designed TDMA schedule. Also,
a bad interrupt or thread handling may lead to unexpected
execution times. Even if a WCET analysis is applied, not all
scenarios might be covered. Despite this knowledge, the TDMA
schedule is mostly designed through an iterative process. As
a starting point, the slot widths are set to the expected task’s
WCET based on an estimation. Afterwards, the widths are
adjusted by using a trial-and-error method where the setup is
verified online and modified offline. This procedure is repeated
until the application requirements (e.g., data update rate) are
met or the minimum allowed slot width is reached. Thereby, the
minimum allowed slot width ∆tSmin

is a function of the tasks
execution time ∆tT where ∆tSmin

≥ ∆tT . It is important, that
the minimum slot width ∆tS must not undercut the lower task
execution time ∆tTmin since this inevitably causes a violation.

To overcome slot violations during run-time, the communi-
cation system may be restarted. However, this may not be a
proper solution for a variety of applications [7]. Concerning
the dynamic properties that lead to such timing violations
- e.g. CPU frequency scaling or task switching overhead in
modern operating systems - the violation may only be of a
short duration and recover on its own.

Previous efforts have been combining event-triggered with
time-triggered networks [14], [15]. Here, the event-triggered
part is mostly an additional communication channel used to
transmit configuration and general data. To monitor and analyze
the bus communication, protocols such as [8], [12], [16] require
additional external hardware [17]. During normal operation,
these tools are not available and thus it is hard to track down
possible errors.

III. PREREQUISITES

This paper presents a fallback mechanism which intends to
diminish data loss caused by unpredicted slot violations. In
the following subsections assumptions and requirements are
presented which are needed to explain the basic functionality
of this mechanism. To keep the explanations as simple as
possible, a fault-free software and hardware are assumed. Thus,
communication fault scenarios due to a wire break or a bad
node (babbling idiot) are not considered in this paper.

A. From Messages to Tasks

The designation message is generally used to indicate a
container which holds some data. A node which puts a message
onto the bus distributes the containing information to all
the other bus participants. In time-triggered communication,
such transmissions start at defined points in time. Thereby,
the usual requirement for a flawless communication is the
timely reception of messages in their slots. Consequently,
the slots must provide the necessary time to transmit their
messages. Beside the transmission time also other parameters
like the process execution time influence the slot length. This
additional delay should be taken into account before the
message transmission and is either assumed or obtained by
using WCET techniques. However, in most explanations, this
is left out or treated as a negligible component.

In the context of this paper, a node does not simply distribute
a message. Rather it executes a Task T . The task is composed of
two parts. The execution of a process P is the first part followed
by the transmission of a message M . A graphical representation
of such a task is shown in Figure 1. This representation is used
for the following explanations.

Process P Message M

Task T

Time

Figure 1. The representation of a task consisting of a process and a message.

As the time passes from left to right the task first invokes
the process. The process execution is represented by a straight

line enclosed by two vertical bars. Following, the winding line
represents the message transmission. The message reception is
indicated by the arrowhead. Their lengths qualitatively visualize
the necessary time to perform the particular operation.

B. Deterministic Process Execution

Usually, the deterministic property of time-triggered commu-
nication relates to the reception time of messages. As long as
all messages are received within their slots the communication
is denoted to be deterministic. When a slot violation occurs,
the communication loses its determinism at that specific point
in time. For the realization of the fallback mechanism, this
consideration is not useful since slot violations are assumed
to be possible. Instead, a deterministic process execution is
reasonable. By using this paradigm, the point in time when a
process finishes its execution is of interest.

Suppose that a process on node B consumes data from a
previously executed process on node A. The provided data
consumed by node B is treated to be deterministic as long as
the process of node A finishes its execution in its specific slot.
This is valid, even if the message reception happened beyond
the expected slot and node B hasn’t started its process, yet.
Hence, if node B starts its process in one of the subsequent
slots the received data is valid and usable.

For this reason, the point in time when a specific information
was gathered is important for the proposed mechanism and
not its message reception time. As long as the subsequent
processes are still able to finish in their slots the system remains
deterministic.

C. Extended Slot Timing Information

In general, two parameters are sufficient to grant a node
access to the shared medium. The first parameter is the global
time tG which is used as the common time base for all bus
participants. The second parameter contains the slot starting
points tS = {tS0 , tS1 . . .} which are usually determined in
advance during the TDMA slot allocation phase. With this set,
each node is aware at which point in time it is allowed to access
the shared communication medium. However, this set does not
imply enough information to detect a slot violation caused by
a previous node. In order to provide the missing information,
the slot structure is separated into multiple sections as shown
in Figure 2. Due to simplicity, the explanation assumes only
one task execution per slot.
The time interval ∆tSn

of slot Sn can be determined based
on the given slot boundaries:

∆tSn
= tSn+1

− tSn
with tSn+1

> tSn
(1)

The internal slot structure consists of three main sections. These
are the task Tn, the starting delay Dn, and the buffer Bn. The
task execution time ∆tTn

results by

∆tTn
= ∆tPn

+ ∆tMn
(2)

where ∆tPn
is the process execution time of process Pn and

∆tMn is the message transmission time of message Mn.

ttSn
tSn+1tTn

tMn
tRn

∆tDn

∆tPn
∆tMn

∆tBn
∆tTn

∆tSn

Slot Sn

Figure 2. Slot composition including a task, the time segments and the
corresponding labels.

The message transmission time ∆tMn
depends on the

message size sMn
in bits and the used data rate d measured

in bits per second:
∆tMn

=
sMn

d
(3)

To determine the message sizes, the total number of bits b per
message are summed up. The resulting size is a function of
the communication protocol P and the message size in bits:

sMn
= P

(m∑
i=0

bi

)
(4)

Since the messages include some protocol-specific overhead the
size of the data stream may vary considerably. Consequently,
the required time to transmit a message may change if the
communication protocol is changed.

The process execution time ∆tPn
is influenced by various

parameters. These are the local clock speed, the code to process,
and the interrupt and/or thread handling. The method, of
how the data is acquired mainly influences the number of
instructions to process and thus changes the entire execution
time. As an example, while the required time for a simple
memory access is rather negligible, complex calculations as
needed for control loops may have a massive impact.

In general, the message transmission time ∆tMn is static.
It can be either determined in advance or derived from
the incoming message using additional, protocol specific
knowledge. As a result, only the process time ∆tPn

dominantly
influences the uncertainty of the tasks execution time. However,
the process execution time is treated to be unknown and
therefore not available to calculate the task execution time.
For this reason, ∆tPn needs to be determined indirectly.

The only information a receiving node is able to determine
from an executed task Tn is the message reception time tRn .
With this and the message transmission time we are able to
calculate the message transmission start

tMn
= tRn

−∆tMn
(5)

which is considered to be identical to the point in time when
process Pn finished its execution.

Under normal conditions task Tn would start its execution
at the beginning of its slot such that tSn

= tTn
. However,

since the current slot may be violated by a delayed message

of the previous task Tn−1, an additional delay ∆tDn
≥ 0 is

introduced. This results in

tTn
= tSn

+ ∆tDn
(6)

Since we are aware of the reception time tRn−1
of the previous

message Mn−1 the caused delay can also be calculated with

∆tDn
= tRn−1

− tSn
(7)

Now we are able to determine the task’s starting point based
on the following conditions:

tTn
=

{
tSn if tRn−1 ≤ tSn

tRn−1 otherwise
(8)

The slot ending labeled with tSn+1 simultaneously marks the
starting point of the subsequent slot Sn+1. The time between
the slot ending and the message reception is the remaining
buffer time ∆tBn

= tSn+1
− tRn

. It indicates how much time
is left until the slot boundary is reached. If ∆tBn

≥ 0, the task
was able to finish in time. Otherwise a slot violation occurred
where −∆tBn = ∆tDn+1 .

IV. SLOT VIOLATION FALLBACK MECHANISM

By using the presented prerequisites we are now able to
apply the fallback mechanism. The mechanism extends the
time-related task execution check by an additional, event-related
validation. The basic functionality is shown in Figure 3. After
the start, the first check relates to the validation of the time-
triggered condition. Here, the node compares its local time tG
with the starting point of slot Sn. The mechanism checks this

Start tG ≥ tSn

false

true tG ≥ tRn−1

false

true

Run Tnn = n+ 1

Figure 3. Structure of the fallback mechanism. The left case evaluates the
time-triggered requirements whereas the right case evaluates the event-triggered
requirement.

condition as long as it returns false. Otherwise, the mechanism
advances to the event-related check. Here the arrival time tRn−1

of message Mn−1 is examined. As long as the previous message
is pending, the mechanism keeps checking this condition. If
this check succeeds, task Tn is allowed to be invoked in its
slot Sn. When task Tn terminated its execution, the following
slot becomes active and the mechanism repeats.

The event-related check is the core feature of the proposed
monitoring mechanism. As long as no slot violation occurs the
expected messages are received in time such that the event-
based condition will evaluate as true. Thus, the communication
is fully time-triggered and the tasks are executed when their
slots become active. Only if a delayed message violates the
previous slot boundary the execution of the upcoming task is
withheld by the event-based check. As soon as the message
is received the pending task is executed immediately. Due to

this feature, a communication overlap is prevented and thus
no data corruption and data loss occur.

ttSn
tSn+1

tSn+2
tSn+3

(c) (ET)

(b) (TT/ET)

(a) (TT)

Figure 4. Communication scenarios representing the fallback mechanism.

Figure 4 shows how the described mechanism takes effect.
Here, three different communication scenarios are depicted.
Scenario (a) shows the default, time-triggered bus commu-
nication. All tasks are processed quickly and the messages
are transmitted in time. Thus, the tasks are allowed to start
at their slots starting point. In scenario (b) the time-triggered
communication is disturbed by a random slot violation. The
second task invokes immediately at its slots starting point
since it already received the message from the previous task.
Unfortunately, it is unable to finish in time which leads to a
slot violation. This causes the subsequent node to delay its task
since the event-based condition is not fulfilled. Nevertheless,
despite this delay, the affected task is able to finish whitin
its slot boundaries. This causes the timely task execution in
slot Sn+3 and the bus communication is time-triggered again.
In scenario (c), all the tasks need more processing time than
expected which leads to multiple slot boundary violations. As a
result, all tasks need to be delayed and thus are mainly started
by the event-based condition.

As a result, a purely time-triggered communication setup
must guarantee that all tasks terminate within their slots.
Otherwise, a single slot violation leads to the loss of de-
terminism and data. As shown, the fallback to the event-
triggered communication diminishes the loss of determinism
and data. The mechanism tries to recover the time-triggered
communication by compensating delays within the slots.

However, a scenario as shown in (c) is critical even if all
processes seem to terminate within their boundaries. If all
tasks in the TDMA round are violating their slots the delay is
propagated into the next round. In this case, the communication
would quickly lose its determinism within the next few rounds.
To overcome this issue, the fallback mechanism could be
extended using a fail-silent mode. If a tasks process violates
the slot boundary its message is not put onto the bus. Since
the subsequent node detects no ongoing transmission at its slot
start it is allowed to start its task on the time-triggered basis.

V. ON-THE-FLY MONITORING MECHANISM

As presented, the fallback mechanism is able to reduce data
loss caused by slot violations. However, additional information
is required to facilitate the setup and verification of the
time-triggered communication. Thus, an on-the-fly monitoring
mechanism is presented which rates various slot specific
qualities. Thereby, the bus communication is analyzed by

tracking the message reception times. The gathered data is
compared to the known slot boundaries and the quality ratings
are determined. As a result, the additional information enables
an implicit verification of the communication state which can
further be used for an extended node control. Following, three
different rating levels are described:

A. Slot Quality Rating

The slot quality rating RSn
is a measure of the closeness

between the task termination time and the upper slot boundary.
It is determined with the help of the buffer-to-slot ratio rBSn =
∆tBn

/∆tSn
with ∆tBn

≤ ∆tSn
. As long as ∆tBn

≥ 0 the
task is able to finish in its slot. Otherwise, the slot ratio becomes
negative which indicates a slot violation. Based on this, the
tasks can be classified within one out of three possible groups
which are labeled as NORMal, CRITical, and FAILed. These
groups are mapped onto the slots time-line as shown in Figure 5.

ttSn
tCn

tSn+1

∆tCn

NORM CRIT FAIL

(a)

∆tBn

(b)

(c)

Figure 5. Slot rating using three different quality regions.

The FAIL region covers all the tasks which violated their
slot boundary. The NORM region represents a timely task
execution with sufficient space to its upper slot boundary. The
CRIT region is added in order to provide information about the
closeness between the task ending and the upper slot boundary.
Thus, an additional boundary tCn is introduced which marks the
critical region’s starting point. Its slot ratio is determined with
rCSn

= ∆tCn
/∆tSn

where ∆tCn
= tSn+1

− tCn
. According

to that, the tasks are classified using the following conditions:

RSn
=


NORM if rCSn > rBSn ≤ 1

CRIT if 0 ≥ rBSn ≤ rCSn

FAIL if rBSn
< 0

(9)

In Figure 5 possible slot rating scenarios are shown. In scenario
(a), the slot quality is rated as normal since the task ending
stays below the critical boundary tCn

. In scenario (b), the task
finishes in the critical region. This still indicates a proper task
execution but draws attention since the task ends near the slot
boundary. The task shown in scenario (c) finishes beyond the
upper slot boundary and is therefore rated as failed.

B. Task Quality Rating

The slot quality rating does not consider a slot violation due
to a prior delayed task execution. Consequently, a delayed task
which violates its slot results in a bad slot rating. This happens
even if the task would usually fit into its slot. Therefore, the

ttSn
tSn+1tCn

NORM CRIT FAIL

t′Mn
t′Rn

tRn

Figure 6. In addition to the slot rating the task rating considers a possible
delay and rates the plane task execution time with the slot time.

task quality rating extends the slot quality rating by considering
the task execution delay.

To achieve this, the task needs to be virtually shifted to
the slot’s starting point as shown in Figure 6. Hence, the
execution delay is subtracted from the message reception time
tRn

to obtain the virtual reception time t′Rn
= tRn

−∆tDn
.

The required delay time is calculated with (7) considering the
conditions shown in (8). Afterwards, the task is rated by the
same mechanism as used for the slot quality rating.

Compared to the slot quality rating the proposed task rating
returns a different result if a task execution delay exists.
Consequently, if the delay ∆tDn

= 0, both mechanisms return
the same result.

C. Process Quality Rating

If a process fits into its slot is an important information
since a badly selected process-to-slot ratio (rPS := ∆tPn

·
∆tSn

−1 > 1) inevitably leads to the loss of determinism.
Therefore, the process quality rating extends V-B. First, in
case of an existing delay the entire task is shifted to the
slot’s beginning. Following, the virtual process termination
time is determined as t′Mn

= t′Rn
−∆tMn

. Finally, the same
procedure as described in V-A is applied. In contrast to the
previous ratings, the ratio rPS is computed by using the process
execution time which is obtained with ∆tPn = t′Mn

−tTn using
(5) and (8). With this, the process is assigned to one of the
three rating groups.

D. Determinism Check

The process quality rating only yields information about the
process-to-slot ratio. Thus, we are still not able to determine
if we lost the deterministic property D due to a process
based slot violation. Therefore, this check provides the missing
information using the following condition:

D =

{
1 if t′Mn

≤ tSn+1
∀n

0 otherwise
(10)

As long as the process is able to finish its execution within
its slots boundaries (D = 1) the deterministic property of the
real-time network is preserved.

VI. DISCUSSION

The intention of the presented mechanisms is to simplify the
setup and validation of a time-triggered bus communication.
The fallback mechanism’s core functionality is to prevent
data loss caused by an unwanted slot violation. To provide

this functionality, it uses features from the time-triggered
and the event-triggered domain. Thereby, as in time-triggered
communication, the bus communication is organized using
message scheduling and the message exchange happens on
a time-triggered basis. As a result, under normal conditions,
the communication mechanism behaves as its purely time-
triggered counterpart. Only in case of a slot-violation the event-
triggered property becomes active. In such a case, the purely
time-triggered communication would lose its determinism
immediately. As presented in Section III-B, this does not
hold for the fallback mechanism. As long as the process is
able to finish in its slot, the fallback mechanism preserves
determinism to a certain degree and is therefore slot-violation
tolerant. Further, depending on the following task execution
times, it is able to recover from a slot-violation such that the
communication is time-triggered again.

In case of a slot violation, the time-triggered scheme is in
danger to lose information if two message transmissions overlap.
Due to its functionality, the fallback mechanism provides
data-loss reduction since it avoids such communication based
data loss. The loss of information based on severe faults like
hardware errors or bad nodes is currently not handled by the
basic fallback mechanism. Consequently, it is vulnerable against
such error scenarios since the currently active node would
simply wait for the missing message and the bus communication
would stop. However, this drawback can be resolved by a higher
layer which aborts the event-triggered part using a watchdog.
After a certain amount of time, the message can be assumed
as lost and the subsequent node runs its task. Instead of the
expected data either the last or a default value could be used.

A bus monitoring tool is not required, since the proposed
on-the-fly monitoring mechanism provides an inherent com-
munication and execution time monitoring feature. Thereby,
each slot, task, and process is rated at runtime which gives an
overview of the state of the entire TDMA round. With this,
it is possible to identify tight slot boundaries, violations, and
the error causing node. Further, the information can be used
to statistically determine the WCET of every single process
during runtime and the currently used data rate can be derived.
However, to use this feature, the participants need to hold
a copy of the entire scheduling list. This list needs to be
distributed whenever a new node is added to the bus.

As already mentioned, the required effort to set up a time-
triggered communication is cumbersome. With the help of the
monitoring feature, this step can be simplified since all required
information is available during runtime. Due to the instant bus
state feedback the overall communication can be evaluated and
verified which leads to a reduced setup and verification time.
This could also be automated such that the bus members find
their slot configuration based on given requirements.

Due to its property of allowing confined slot violations it is
not possible to integrate this mechanism into protocols which
use bus guardians. Consequently, the fallback mechanism would
not work since a delayed transmission would be mistakenly
interrupted by the guard.

VII. CONCLUSION & OUTLOOK

In this paper, a new distributed real-time bus communication
scheme paired with an on-the-fly monitoring mechanism has
been proposed. It combines time-triggered and event-triggered
concepts to keep the bus communication functional even
if the slot boundaries are violated by an ongoing message
transmission.

The fallback mechanism prevents a possible data loss even
if the time-triggered property is lost. The on-the-fly monitoring
mechanism rates the single components of a TDMA round
to provide detailed information about the overall bus state. In
effect, no additional external monitoring hardware is required to
verify the proper bus communication during runtime. However,
the fallback mechanism is vulnerable to missing messages
which can easily be caused by a broken wire or a bad node. To
overcome this drawback, the fallback mechanism needs to be
extended. Therefore, available approaches like watchdogs will
be investigated. Further work comprises the simulation of the
proposed mechanisms and the development of a distributed bus
communication prototype to investigate the functionality using
a small set of nodes. The gathered simulation and prototype
results will be published in the future.

ACKNOWLEDGMENT

The authors would like to thank the reliability and product
testing department of Infineon Technologies Austria AG for
providing an interesting project topic. Fruitful discussions with
KAI and Infineon colleagues are also greatly acknowledged.

This work was funded by the Austrian Research Promotion
Agency (FFG, Project No. 860424).

REFERENCES

[1] R. Kirner and P. Puschner, “Classification of WCET
Analysis Techniques”, in Eighth IEEE International
Symposium on Object-Oriented Real-Time Distributed
Computing (ISORC’05), IEEE, 2005, pp. 190–199. DOI:
10.1109/ISORC.2005.19.

[2] S. Edgar and A. Burns, “Statistical analysis of WCET
for scheduling”, in Proceedings 22nd IEEE Real-Time
Systems Symposium (RTSS 2001) (Cat. No.01PR1420),
Dec. 2001, pp. 215–224. DOI: 10.1109/REAL.2001.
990614.

[3] R. Kirner and P. Puschner, “Transformation of path
information for WCET analysis during compilation”, in
Proceedings 13th Euromicro Conference on Real-Time
Systems, IEEE Comput. Soc, 2001, pp. 29–36. DOI:
10.1109/EMRTS.2001.933993.

[4] S. M. Petters, “How much worst case is needed in
WCET estimation”, in 2nd International Workshop on
Worst Case Execution Time Analysis, 2002, pp. 111–112.

https://doi.org/10.1109/ISORC.2005.19
https://doi.org/10.1109/REAL.2001.990614
https://doi.org/10.1109/REAL.2001.990614
https://doi.org/10.1109/EMRTS.2001.933993

[5] G. Semeraro, G. Magklis, R. Balasubramonian, D.
Albonesi, S. Dwarkadas, and M. Scott, “Energy-efficient
processor design using multiple clock domains with
dynamic voltage and frequency scaling”, in Proceedings
of the 8th International Symposium on High Performance
Computer Architecture, IEEE, Aug. 2002. DOI: 10.1109/
HPCA.2002.995696.

[6] E. Le Sueur and G. Heiser, “Dynamic voltage and
frequency scaling: The laws of diminishing returns”,
in Proceedings of the 2010 International Conference on
Power Aware Computing and Systems, ser. HotPower’10,
2010, pp. 1–8.

[7] W. Steiner and W. Elmenreich, “Automatic Recovery of
the TTP/A Sensor/Actuator Network”, in Proceedings of
the First Workshop on Intelligent Solutions in Embedded
Systems, 2003, pp. 25–37.

[8] FlexRay, Communications System Protocol Specification,
Oct. 2010.

[9] R. Obermaisser, P. Peti, and H. Kopetz, “Virtual Net-
works in an Integrated Time-Triggered Architecture”, in
10th IEEE International Workshop on Object-Oriented
Real-Time Dependable Systems, IEEE, 2005, pp. 241–
253. DOI: 10.1109/WORDS.2005.55.

[10] T.-S. N. T. Group, Tsn, Mar. 2018. [Online]. Available:
http://www.ieee802.org/1/pages/tsn.html (visited on
03/31/2018).

[11] H. Kopetz, M. Braun, C. Ebner, A. Kruger, D. Millinger,
R. Nossal, and A. Schedl, “The design of large real-time
systems: The time-triggered approach”, in Proceedings
16th IEEE Real-Time Systems Symposium, IEEE Comput.
Soc. Press, 1995, pp. 182–187. DOI: 10.1109/REAL.
1995.495208.

[12] W. Elmenreich and R. Ipp, Introduction to TTP/C and
TTP/A, 2003.

[13] G. Leen and D. Heffernan, “TTCAN: A new time-
triggered controller area network”, Microprocessors and
Microsystems, vol. 26, no. 2, pp. 77–94, 2002.

[14] P. Pedreiras and L. Almeida, “Combining event-triggered
and time-triggered traffic in FTT-CAN: Analysis of
the asynchronous messaging system”, in Factory Com-
munication Systems, 2000. Proceedings. 2000 IEEE
International Workshop on, IEEE, 2000, pp. 67–75.

[15] L. Almeida, P. Pedreiras, and J. A. G. Fonseca, “The
FTT-CAN protocol: Why and how”, IEEE transactions
on industrial electronics, vol. 49, no. 6, pp. 1189–1201,
2002.

[16] C. Watterson, Controller Area Network (CAN) Implemen-
tation Guide, Application Note AN-1123, 2012. [Online].
Available: http://www.analog.com/media/en/technical-
documentation/application-notes/AN-1123.pdf (visited
on 11/02/2017).

[17] TTTech, Monitoring node, 2018. [Online]. Available:
https : / / www . tttech . com / products / aerospace /
development - test - vv / test - hardware / ttp - monitoring -
node/ (visited on 01/10/2018).

https://doi.org/10.1109/HPCA.2002.995696
https://doi.org/10.1109/HPCA.2002.995696
https://doi.org/10.1109/WORDS.2005.55
http://www.ieee802.org/1/pages/tsn.html
https://doi.org/10.1109/REAL.1995.495208
https://doi.org/10.1109/REAL.1995.495208
http://www.analog.com/media/en/technical-documentation/application-notes/AN-1123.pdf
http://www.analog.com/media/en/technical-documentation/application-notes/AN-1123.pdf
https://www.tttech.com/products/aerospace/development-test-vv/test-hardware/ttp-monitoring-node/
https://www.tttech.com/products/aerospace/development-test-vv/test-hardware/ttp-monitoring-node/
https://www.tttech.com/products/aerospace/development-test-vv/test-hardware/ttp-monitoring-node/

	Introduction
	State of the Art
	Prerequisites
	From Messages to Tasks
	Deterministic Process Execution
	Extended Slot Timing Information

	Slot Violation Fallback Mechanism
	On-the-Fly Monitoring Mechanism
	Slot Quality Rating
	Task Quality Rating
	Process Quality Rating
	Determinism Check

	Discussion
	Conclusion & Outlook

