
This is the author’s version of the work. Personal use of this material is permitted. This paper was published as:
T. Dittrich and W. Elmenreich. Comparison of a spatially-structured cellular evolutionary algorithm to an evolutionary algorithm with panmictic
population. In Proceedings of the 12th International Workshop on Intelligent Solutions in Embedded Systems (WISES’15), pages 145–149,
Ancona, Italy, October 2015.

Comparison of a spatially-structured cellular
evolutionary algorithm to an evolutionary

algorithm with panmictic population
Thomas Dittrich, Wilfried Elmenreich

Institute of Networked and Embedded Systems / Lakeside Labs
Alpen-Adria Universität Klagenfurt, Austria
Dizi.D@gmx.at, wilfried.elmenreich@aau.at

Abstract—Evolutionary Algorithms are metaheuristic
optimization algorithms which are based on a population of
individual candidate solutions. These solutions are evolved
with the aim to solve a given problem. We compare two
types of Evolutionary Algorithms, one with a panmictic
population and one with a spatially-structured population.
Previous works indicate that evolutionary algorithms with
a spatially-structured population perform better that those
with a panmictic population. In this work we will examine
whether this holds true for evolving Artificial Neural
Networks. For comparison we use two test problems, a
simple XOR calculation and a complex task requiring self-
organization among a number of agents. Our findings show
that for the evaluated tasks, the algorithm with a spatially-
structured population performs better than an algorithm
with panmictic population.

I. INTRODUCTION

An Evolutionary Algorithm (EA) is a metaheuristic
optimization algorithm for finding the optimal solution
for a certain problem within a given search space [1].
There are many different types of EAs. All EAs share
some common properties [2]: An EA uses the collec-
tive learning process of individuals in a population,
descendants of individuals are generated by randomized
processes such as mutation and recombination and by
means of evaluating individuals in their environment, a
measure of quality or fitness value can be assigned to
every individual. The process of this optimization, called
evolution, can be described as follows. During each step
of the evolutionary process, named a generation, the
individuals are evaluated as a controller for a given
problem and then ranked by their fitness values. A
selection algorithm decides for every individual if it
will be replaced by any other individual, by a mutation
of another individual, by its offspring, or by a new
individual generated using random settings.

Evolutionary algorithms (EAs) have been applied to
solve or approximately solve many problems, for exam-

ple finding Cellular Automata rules for Morphogenesis
(CAM) [3], the Traveling Salesman Problem [4], and for
evolving game players [5]. They have also been used
to evolve a robot controller [6] and for designing the
controller for a mobile robot for competitive games [7],
[8].

As the simulation time increases for complex prob-
lems it is important to use an EA which finds a sufficient
solution in acceptable time. Often, an EA implements a
panmictic population, i.e., all individuals of a population
are potential partners, although typically with different
mating probabilities depending on their fitness. In con-
trast, in spatially-structured EAs the mating between in-
dividuals is restricted based on a graph or a network [9].
EAs with a structured population implement two pro-
cesses, namely exploration and exploitation in the search
space, which often leads to superior results in contrast
to EAs with panmictic populations. Tomassini showed
for genetic programming that an EA with panmictic
population results in a lower genotypic diversity in the
population than when an algorithm where the population
is spatially structured is used. He also showed that the
panmictic population is less efficient than a spatially-
structured population [10].

Cellular EAs implement a structured population in
a particular form of adjacent cells, where each cell
represents an individual. Cells can be arranged as a one-
dimensional line, a one-dimensional ring, or a 2D grid,
optional with a toroidal topology [11]. Alba examined
the influence of the shape of a spatially-structured popu-
lation and the influence of the size of the neighborhood
on the performance of the algorithm [12]. A combination
of these two types of EAs, the Island model, was investi-
gated by Neumann in [13]. Other examples of spatially-
structured EAs include patchwork models for EA [14],

terrain-based genetic algorithms [15] and religion-based
EA models [16].

In this work we will examine a spatially structured
evolutionary algorithm for evolving artificial neural net-
work (ANN) controllers. The EA with panmictic popu-
lation that we use for comparison is the Neural Network
Genetic Algorithm (NNGA) from the Framework for
Evolutionary Design (FREVO) [17]. NNGA was config-
ured to use only a single population, thus implementing a
true panmictic population. We implemented an EA with
spatially structured population as a Cellular Evolutionary
Algorithm with two-dimensional Population (CEA2D)
as an optimization method in FREVO. For ANNs, we
used a Three Layered Neural Network (TLNN) and a
Fully Meshed Neural Network (FMNN). These are all
components available from FREVO. For the comparison
of the two EAs we used the XOR and CAM problems
as test problems.

Section II introduces the spatially-structured evolu-
tionary algorithm. Section III describes the implemen-
tation of this algorithm. Section IV introduces the test
problems and Section V shows the evaluation for the two
algorithms. Section VI concludes the paper and suggests
ideas for further work based on our results.

II. THE SPATIALLY-STRUCTURED EVOLUTIONARY
ALGORITHM

In a spatially-structured evolutionary algorithm each
of the individual candidate solutions has a limited
amount of neighbors with whom it can interact, i.e.,
exchange genetic information or replace a neighbor. This
structure is implemented as an undirected graph with the
individuals being the nodes and the connections between
the neighbors being the edges. The structure that we used
is a two-dimensional grid whose rows and columns are
wrapped onto a toroid surface, i.e., wrapped left–right
and up–down. The evolutionary process of the spatially-
structured algorithm is similar as described above. A
notable difference is that the selection algorithm only
uses neighbors of an individual to replace it by a
mutation or by a recombination.

III. IMPLEMENTATION OF THE
SPATIALLY-STRUCTURED ALGORITHM

The algorithm is implemented as an optimization
method module within FREVO. FREVO supports the
implementation of various components as building
blocks. These are genome representation, optimiza-
tion method, optimization problem, and ranking algo-
rithm [17]. The described algorithm will be implemented

y

r

b

y y y

y y y
y y

g g g
g g
g g g

Fig. 1. A population with 10x10 candidates. The green (g) candidates
are neighbors of the blue (b)) candidate and the yellow (y) candidates
are neighbors of the red (r) candidate.

as an optimization method, which implements the pop-
ulation and its structure. An optimization method can
be used generically with any type of individual (named
a controller representation in FREVO) and applied for
different problems.

A. Structure of the population

The controller representations of a population are
distributed over a two-dimensional area. The area that
we use for this algorithm is a regular grid where ev-
ery element represents one controller representation of
the population. As Fig. 1 shows, the neighborhood of
the controller representations is a Moore-Neighborhood
which connects the borders of the grid so that it forms
the surface of a toroid.

B. Selection of the controller representations

For every controller representation in the population
we calculate a fitness ranking of itself and its neighbors.
If this controller is ranked on position one it is selected
to survive to the next generation, otherwise, it will be
replaced either by a mutation of the neighbor with the
highest fitness value, a recombination of itself with this
neighbor or a new representation with random settings.
At the beginning of the first generation all representa-
tions are initialized with random values. Configuration
parameters are the percentage of candidates replaced by
mutations, results of recombinations or created anew.

C. Neighborhood ranking

The controller representations are ranked by the
ranking algorithm selected during the configuration of
FREVO. Since the ranking returns only a list of repre-
sentations ordered by fitness value, there is a potential

problem if multiple representations reach the highest
fitness value in a population. For example if ra, rb and
rc are neighbors and have the same fitness value which
is the best in their neighborhood the ranking could be
the following:

ranking for ra for rb for rc
1. rb rc ra
2. rc ra rb
3. ra rb rc

.

In these rankings, none of the three representations is
elite in its own ranking and so all the representations will
be replaced in the next iteration, effectively losing the
individuals with the best fitness. In the implementation,
this problem has been solved by disturbing each fitness
value by a small random value before running the
ranking algorithm, which breaks deadlocked situations
such as those described above into a deterministic or-
der among the different rankings. After ranking, these
random additions are removed from the fitness values.

IV. TEST PROBLEMS

For the comparison of the two evolutionary algorithms
we used a setup with two test problems: The XOR
problem and the Cellular Automaton Morphogenesis
(CAM) problem.

A. XOR

The aim of this problem is to create a ANN wich has
the functionality of the XOR function (exclusive or) as
shown in the following truth table.

a b z
0 0 0
0 1 1
1 0 1
1 1 0

The fitness value for one representation is calculated
as a negative mean squared error as follows:

F = −1

4

4∑
i=1

(oi − zi)
2 (1)

with oi being the output of the representation for the
inputs a and b of the i-th line of the truth table and zi
being the expected output of this line.

B. Cellular Automaton Morphogenesis

In the Cellular Automaton Morphogenesis (CAM)
Problem, a representation tries to display a reference
picture. For this, it is duplicated to every position of a
rectangular grid which has the same number of rows and
columns as the picture has pixels (in height and width).
The output of these duplicates is then converted to one
of the colors that occur in the reference picture and the
input is the color of their neighbors in a von Neumann
neighborhood, i.e. the four cells within a Manhattan
distance of one. The simulation is done in discrete time
steps with the input of step i being the output of step
i−1. At the end of every simulation step, a fitness value
is calculated by the formula

fi = 1− 1

(NC − 1)2 · w · h

w∑
x=1

h∑
y=1

(cyx − ryx)
2 (2)

with NC being the number of different colors in the
reference picture, w and h being the width and height
of the picture, cyx being the color output at position (x, y)
and ryx being the reference color at this position.

To obtain a stable non-oscillating solution, the fitness
is calculated as a weighted sum over N iterations

F =

N∑
i=1

fi
2N−i

(3)

with fi being the value calculated in equation 2.

V. EVALUATION

During all the simulations we used identical settings
for the EAs which were chosen as follows:

Number of Generations 200
Population size 100
Percentage Elite 11
Percentage Mutation 59
Percentage XOver 30
Percentage Renew 0
Percentage Random Selection 0
Mutationseverity 30
Probability of Mutation 1

where PercentageMutation = 11 means, that there
is exactly one elite controller representation in every
neighborhood.

The data shown in each of the following figures is the
average value over 100 runs with different seeds for the
random number generator.

0 50 100 150 200

−0.5

−0.4

−0.3

−0.2

−0.1

0

Generation

Fi
tn

es
s

CEA2D FMNN
CEA2D TLNN
NNGA FMNN
NNGA TLNN

Fig. 2. Fitness against generation number for the XOR-Problem.

0 50 100 150 200
0

5

10

15

20

25

Generation

D
iv

er
si

ty

CEA2D FMNN
CEA2D TLNN
NNGA FMNN
NNGA TLNN

Fig. 3. Diversity against generation number for the XOR-Problem.

A. XOR

Figure 2 shows that the CEA2D performed signif-
icantly better than the NNGA for the XOR problem
irrespective of whether a Fully Meshed Neural Network
or a Three Layered Neural Network was used.

A major difference is that the CEA2D keeps, due
to the spatially structured population, a higher diversity
between the ANNs in the population than the NNGA.
Figure 3 shows the average diversity between all the
ANNs in one population.

0 50 100 150 200

1.75

1.8

1.85

1.9

1.95

2

Generation

Fi
tn

es
s

CEA2D FMNN
CEA2D TLNN
NNGA FMNN
NNGA TLNN

Fig. 4. Fitness against generation Number for the CAM-Problem

0 50 100 150 200
0

50

100

150

Generation

D
iv

er
si

ty
CEA2D FMNN
CEA2D TLNN
NNGA FMNN
NNGA TLNN

Fig. 5. Diversity against generation Number for the CAM-Problem

B. CAM

As a reference picture for the CAM-Problem [3] we
selected the Hungarian flag with 6 by 9 pixels and 20
simulation steps (N = 20 in Equ. 3). Figure 4 shows
that, for this simulation, the NNGA performs similar to
the CEA2D in the beginning but after 50 generations, it
gets outperformed by the cellular algorithm. Again the
CEA2D maintains a significantly higher diversity which
is shown in Figure 5.

VI. CONCLUSION AND FUTURE WORK

Using FREVO we simulated the XOR and the CAM
problems with the two ANNs, FMNN, and TLNN, which
were evolved by the EAs CEA2D and NNGA. These
simulations showed that for our test cases, the CEA2D
performs significantly better than NNGA. Although the
two algorithms are comparable in their parameterization
and local selection strategies, the CEA2D is able to
maintain a higher diversity among its population, al-
lowing the algorithm to find better solutions after 30-
50 generations. For the future we are planning to apply
the CEA2D for more complex problems, in particular
for swarm robotic problems. Therefore, we will extend
FREVO with an interface to the robotic simulator AR-
GoS [18]. We have further made the CEA2D algorithm
available in the current FREVO release, available as open
source under http://frevo.sourceforge.net.

REFERENCES

[1] E. Alba and B. Dorronsoro. Cellular Genetic Algorithms.
Operations research/computer science interfaces series. Springer,
2009.

[2] T. Baeck, D.B Fogel, and Z Michalewicz. Handbook of Evolu-
tionary Computation. Taylor & Francis, 1997.

[3] W. Elmenreich and I. Fehérvári. Evolving self-organizing cellular
automata based on neural network genotypes. In Proceedings
of the Fifth International Workshop on Self-Organizing Systems,
volume LNCS 6557, pages 16–25. Springer Verlag, 2011.

[4] Huai-Kuang Tsai, Jinn-Moon Yang, Yuan-Fang Tsai, and Cheng-
Yan Kao. An evolutionary algorithm for large traveling salesman
problems. Systems, Man, and Cybernetics, Part B: Cybernetics,
IEEE Transactions on, 34(4):1718–1729, 2004.

[5] M. Sipper, Y. Azaria, A. Hauptman, and Y. Shichel. Designing
an evolutionary strategizing machine for game playing and be-
yond. Systems, Man, and Cybernetics, Part C: Applications and
Reviews, IEEE Transactions on, 37(4):583–593, 2007.

[6] W. Elmenreich and G. Klingler. Genetic evolution of a neural
network for the autonomous control of a four-wheeled robot.
In A. Gelbukh and Ángel Fernando Kuri Morales, editors,
Sixth Mexican International Conference on Artificial Intelligence,
pages 396–406. IEEE Computer Society, 2007.

[7] I. Fehervari and W. Elmenreich. Evolving neural network
controllers for a team of self-organizing robots. Journal of
Robotics, 2010.

[8] A.L. Nelson, E. Grant, and T.C. Henderson. Evolution of neural
controllers for competitive game playing with teams of mobile
robots, 2004.

[9] Matteo De Felice, Sandro Meloni, and Stefano Panzieri. Effect
of topology on diversity of spatially-structured evolutionary algo-
rithms. In Proceedings of the 13th Annual Conference on Genetic
and Evolutionary Computation, GECCO ’11, pages 1579–1586,
New York, NY, USA, 2011. ACM.

[10] M. Tomassini. Spatially Structured Evolutionary Algorithms:
Artificial Evolution in Space and Time. Natural Computing
Series. Springer, 2005.

[11] E. den Heijer and A.E. Eiben. Maintaining population diversity
in evolutionary art using structured populations. In Evolutionary
Computation (CEC), 2013 IEEE Congress on, pages 529–536,
June 2013.

[12] E. Alba and José M. Troya. Cellular evolutionary algorithms:
Evaluating the influence of ratio. In M. Schoenauer, K. Deb,
G. Rudolph, X. Yao, E. Lutton, J. Merelo, and H. Schwefel,
editors, Parallel Problem Solving from Nature PPSN VI, volume
1917 of Lecture Notes in Computer Science, pages 29–38.
Springer Berlin Heidelberg, 2000.

[13] F. Neumann, P. S. Oliveto, G. Rudolph, and D. Sudholt. On the
effectiveness of crossover for migration in parallel evolutionary
algorithms. In GECCO, pages 1587–1594, 2011.

[14] T. Krink, B. H. Mayoh, and Z. Michalewicz. A PATCHWORK
model for evolutionary algorithms with structured and variable
size populations. In Proceedings of the Genetic and Evolutionary
Computation Conference, pages 1321–1328, 1999.

[15] V. Scott Gordon, Rebecca Pirie, Adam Wachter, and Scottie
Sharp. Terrain-based genetic algorithm (tbga): Modeling param-
eter space as terrain. In Wolfgang Banzhaf, Jason M. Daida,
A. E. Eiben, Max H. Garzon, Vasant Honavar, Mark J. Jakiela,
and Robert E. Smith, editors, GECCO, pages 229–235. Morgan
Kaufmann, 1999.

[16] René Thomsen, Peter Rickers, and Thiemo Krink. A religion-
based spatial model for evolutionary algorithms. In Marc Schoe-
nauer, Kalyanmoy Deb, Günther Rudolph, Xin Yao, Evelyne
Lutton, JuanJulian Merelo, and Hans-Paul Schwefel, editors,
Parallel Problem Solving from Nature PPSN VI, volume 1917
of Lecture Notes in Computer Science, pages 817–826. Springer
Berlin Heidelberg, 2000.

[17] A. Sobe, I. Fehervari, and W. Elmenreich. FREVO: A tool for
evolving and evaluating self-organizing systems. In Self-Adaptive
and Self-Organizing Systems Workshops (SASOW), 2012 IEEE
Sixth International Conference on, pages 105–110, 2012.

[18] C. Pinciroli, V. Trianni, R. O’Grady, G. Pini, A. Brutschy,
M. Brambilla, N. Mathews, E. Ferrante, G. Di Caro, F. Ducatelle,
M. Birattari, L. M. Gambardella, and M. Dorigo. ARGoS: a
modular, parallel, multi-engine simulator for multi-robot systems.
Swarm Intelligence, 6(4):271–295, 2012.

	Introduction
	The spatially-structured evolutionary algorithm
	Implementation of the spatially-structured algorithm
	Structure of the population
	Selection of the controller representations
	Neighborhood ranking

	Test Problems
	XOR
	Cellular Automaton Morphogenesis

	Evaluation
	XOR
	CAM

	Conclusion and Future Work
	References

