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Assessing the Value of Coordination in Mobile Robot Exploration using a
Discrete-Time Markov Process

Torsten Andre1 and Christian Bettstetter2

Abstract— With the introduction of multi-robot systems for
exploration the question then arises, whether coordination
among robots in such systems is required. We propose a
model based on Markov processes to evaluate the need for
coordination in multi-robot systems during the exploration of
unknown environments and determine possible gains achievable
through coordination. The model is illustrated by exploration
of an indoor office environment. We qualitatively identify
characteristics of environments which make coordination nec-
essary and allow to quantitatively include them in the model.
The expected gain through coordination highly depends on
the environment. We further investigate the impact of team
sizes. In favorable environments explicit coordination is not
needed at the cost of increased team sizes. This helps to raise
understanding of factors having an impact on coordination
functions and making it possible to approximate a possible
gain through coordination.

Index Terms— Coordination, Robot Exploration, Mobile
Robot Teams, Indoor Exploration, Multi-robot systems

I. Introduction and Objectives

The exploration of unknown environments is among the
most basic tasks for robots in indoor applications. Generally,
one may assume that an environment is unknown to a robot
when first deployed. Robots have to learn their environment
autonomously by creating a map. Depending on the appli-
cation, time may be an important factor for map creation.
Robots deployed at homes to assist in domestic work, for
example, need to map the environment only once while
working in the same environment possibly for months. The
mapping may be done during robot setup before starting the
intended task. In such cases, the time to set up the robot is
not an issue. In other scenarios, however, such as search and
rescue, time may become mission critical. Robots may be
brought to an environment on demand, for example, in case
of fire or natural disasters. The mapping of the environment
is an inherent part of the mission.

Multiple robots may be utilized to speed up the task
at hand by parallelizing the exploration of an unknown
environment. Using multi-robot systems, the question for the
necessity of coordination comes into play. For single robot
systems, exploration efficiency depends on the exploration
strategy, which in turn determines the next area that a robot
shall move to. A coordination method may be required,
which shall prevent multiple robots to move to the same
area determined by the exploration strategy.
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Various forms of coordination are discussed in the liter-
ature. Hollinger and Singh, for example, consider coordi-
nation of robots with periodic connectivity [1]. Butzke and
Likhachev incorporate multiple utility functions allowing the
adjustment of exploration priorities [2]. Heo and Varshney
coordinate sensors in a wireless sensor network by distribut-
ing them spatially evenly [3].

Amigoni et al. quantify the expected gain of coordination
of multi-robot teams [4]. They conclude that coordination
is not as important as one might think in some scenarios
and suggest to concentrate on optimizing robots’ individual
exploration processes instead of optimizing coordination
among robots. The problem with evaluating the necessity of
coordination in real-world scenarios is that the perception
of the environment has strong impact on the assignment
of yet unexplored areas (as will be illustrated below). Due
to varying perceptions of the same environment caused by
sensor noise, slightly different starting positions, or changes
in the environment itself, a robot is unlikely to follow
the very same path at all times when an environment is
being explored. To get results of general validity, many runs
in the same environment are needed. To circumvent such
problems, we propose to use a Markov process to consider all
possibilities how multi-robot systems may distribute during
the exploration of an unknown environment. This way we
aim to quantify the gain to coordinate robots and evaluate
the impact of varying environments and team sizes.

The contribution of this paper is the quantitative assess-
ment of coordination in multi-robot teams considering team
sizes and environments’ characteristics having an impact of
its perception and thus on coordination.

II. Background on Robot Exploration

In exploration missions, robots typically start out in an
environment unknown to them. The first task is to move
along the unexplored area and create a map. The allocation
of unexplored areas to robots is a continuous-time and
continuous-space process at the low-level planner, which
is responsible for continuous path planning. A high-level
planner abstracts from the environment by segmentation [5],
yielding discrete areas of the environment. In indoor en-
vironments, segments may map to rooms or parts thereof.
As commonly referred to, we denote unexplored areas, here
segments, next to already explored segments as frontiers [6].

We assume a set of segments S with cardinality S for
a given environment and a given segmentation algorithm.
The exploration strategy determines the next frontier from
the set of known frontiers F(t) ⊆ S at time t based on
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Fig. 1: (a) Layout of indoor environment with segments s1, s2, and s3. Segments s1 and s2 are connected by a passage of
width w1, s2 and s3 with one of width w2. P1 and P2 mark two possible positions of the robot. (b) and (c) show the robot’s
perception of the environment from position P1 and P2, respectively, for w1 = w2. (d) shows the robot’s perception from
position P1 with w2 � w1.

the current map once a robot has finished exploration of a
previous segment.

Numerous approaches have been developed to solve the
problem of assigning available frontiers to robots. Such
exploration strategies are driven by a utility function u
assigning a utility value to frontiers, which enables us to
compare and select the frontier expected to maximize system
performance. Hence, the exploration strategy problem is
to select a frontier f ∈ F(t) maximizing the utility value
returned by u: arg max f∈F(t) u( f ).

Utility functions may include a cost function c( f ) and a
gain function g( f ). Costs may include any combination of
travel distance, used energy, time, and other constraints to
reach a frontier. Costs are minimized either for individual
robots, such as in [4], [7], or system wide such as in [5].
Gains may include information gain (see [8] and references
therein), connectivity [9] between robots, or other gains.

Another class of utility functions combines the problems
of simultaneous localization and mapping (SLAM) [10] and
frontier allocation to allocate frontiers to robots on the
next-best-view principle to reduce inaccuracies during map
building. We do not consider this approach here but assume
that map creation and area exploration are disjoint. An
elaborate summary and comparison of exploration strategies
can be found in [11].

During exploration robots perceive their environment by
means of sensors, such as ultra-sound sensors, laser range
scanners, or cameras using image processing. Based on these
perceptions, robots iteratively create a map of their unknown
environment by mapping frontiers assigned by the utility
function [5]. A complete map of the environment is obtained
upon exploration having traversed all S segments of the
environment. The order in which segments are added to the
map is not fixed and may be influenced by the perception of
the environment and the characteristics thereof.

III. Perception InfluencesMap Creation

A given environment may be perceived differently by a
robot at different points in time. The perception is mainly
influenced by two factors: the robot’s current position and
noisy sensor readings. Furthermore, the interpretation of such
perceptions may suffer from map inaccuracies. Let us explain
with an example that environment perception has impact on
map creation.

Fig. 1a illustrates the layout of a segment s2 at a corridor’s
end connecting two segments s1 and s3. The openings to the
segments s1 and s3 have widths w1 and w2, respectively. For
illustration, the robot heading towards the corridor’s end is
positioned at either location P1 or P2, where P1 is at the
horizontal center of the corridor while P2 is shifted to the
right. To assign a utility value to frontiers, we assume without
loss of generality that the robot is capable of deducing the
information gain of a segment by its expected unexplored
area, as suggested in [12]. If the robot is located at position
P1, the perceived sensor readings look like in Fig. 1b. In this
case, the inferred areas are likely to be identical, because s1
and s3 are assumed to be of identical size and the same
area of both segments is already explored. If the robot
is located at P2, under the same assumption of identical
segment sizes, the information gain of segment s3 will be
larger, because a larger area of segment s1 has already been
explored (see Fig. 1c). Therefore, the assignment of the next
frontier depends on the robot’s position. The same holds
for any utility function that considers costs (such as travel
distance), gains, or combinations thereof.

Also the characteristics of the environment influence in
which order segments are traversed. Fig. 1d shows the same
environment, but this time with different door widths (w2 �

w1). It can be seen that, independent of the robot’s position
P1 or P2, the explored area of segment s3 is larger than that
of s1. Therefore, s1 becomes more likely to be assigned as
next frontier.

IV. MarkovModel and PerformanceMetrics

A. Definition of States and State Transition Matrix

Let us use a Markov process to determine the likelihood
of a robot’s progress in its exploration task in an unknown
environment. We consider the high level planner operating on
spatially discrete segments. Robots change from segment to
segment at discrete time steps. This is a common assumption
used in many publications, such as [4], [7], [13]. We assume
that exploration takes approximately the same time for each
segment. This enables us to model the exploration process
by a discrete-time, first-order Markov process.

Given is an environment consisting of S segments obtained
through segmentation. At any discrete time instant t, a subset
F(t) ⊆ S with cardinality F(t) frontiers is known. Explo-
ration ends when F(t) = ∅. The environment’s segments



are the state space of the Markov process having cardinality
S = |S|. The set of robots is denoted by A; the number of
robots is |A| = A ∈ N.

The state transition matrix ~P of dimension S × S models
the utility function and the impact of the environment. It
allows for a non-deterministic order of traversed segments
as explained in Section III. If there is no path between
two segments si and s j, i , j, the corresponding transition
probability in ~P is zero. Self-loops are not allowed in the
model, Pi,i = 0, because robots may not stall in an area after
having finished exploration. Each segment takes a given time
period, here set to one time unit.

The position of a robot a ∈ A at discrete time t is described
by the row vector ~va(t) by setting the sth entry corresponding
to the sth segment, s ∈ S, in which the robot is located, to
one. The initial position of robot a is called ~va(0). With the
Markov assumption, the probability of a robot’s location at
time t = 1, 2, . . . time unit(s) can then be computed by

~va(t) = ~va(0) ~Pa(t) . (1)

The probability of a robot to be at a segment s ∈ S at
time t corresponds to the sth entry in ~va(t). Since we assume
that no coordination between robots is present, robots move
independently from each other making them stochastically
independent and, therefore, it is possible to compute each
robot’s location distribution individually.

B. Definition of Performance Metrics
In order for a segment to be explored, it needs to be visited

by at least one robot. Let X(t) denote the binary random
variable that segment s is being explored at time instant t by
at least one robot. The probability P(X(t) = s) that at least
one robot is at segment s at time t is

P
(
X(t) = s

)
= 1 −

A∏
a=1

[
1 − v(s)

a (t)
]

(2)

where v(s)
a (t) is the sth entry of robot a’s state vector ~v at

time t.
This model enables us to compute the expected level of

parallelization by considering the expected number of seg-
ments explored in parallel. Generally robots shall be assigned
uniquely to frontiers. Such motivation may be twofold.
First, we would like to prevent possible self-interference
among robots during mapping. Second, multiple robots in
the same area may decrease efficiency during exploration
due to redundant exploration of the same segment causing
an overall delay. Therefore, we assume that the system
performs most efficiently if a single robot only operates
at any assigned frontier. The expected number of frontiers
explored simultaneously at time t is

E[X(t)] =

S∑
s=1

P (X(t) = s) . (3)

We normalize the total explored area to compute the
efficiency of the exploration by

η(t)B
E[X(t)]

O(t)
∈ [0, 1] , (4)

where O(t) is the number of segments which could have been
explored at time t. The cumulative efficiency is

θ(t) B
∑t
τ=0 E[X(τ)]∑t
τ=0 O(τ)

. (5)

To compare uncoordinated and coordinated robots we use
the coordination gain

g(t) B
min {F(t), A}

E[X(t)]
, (6)

which is the ratio of frontiers explored assuming perfect
coordination and the expected number of explored frontiers
without coordination.

C. Transition Probabilities

Setting the probabilities in the transition matrix ~P allows to
model the impact of the environment on the frontier assign-
ments to robots. We consider robots with memory. Markov
processes do not allow easily to keep track of already visited
states, here segments, due to their Markov property. To model
a robot’s memory, the transition graph must not include
any loops preventing robots to reach any state more than
once. In principle (1) can be used to model heterogeneous
robots running different utility functions leading to different
transition probabilities. Here, we only consider homogeneous
robots using the same utility function.

...

Fig. 2: Frontiers are weighted with transition probabilities.

To model the impact of the perception of the environ-
ment, the transitions from a given segment to all potential
succeeding segments are weighted with the corresponding
transition probabilities (see Fig. 2). Frontiers fi (i = 1 . . . n)
are possible succeeding frontiers to s with probabilities pi

(i = 1 . . . n,
∑n

i=1 pi = 1).
We consider the non-deterministic order of traversed

segments and distinguish two cases. We assume a robot’s
position in a segment to be uniformly distributed, making
adjacent frontiers equally likely to be selected as next frontier
(case I). The probabilities for each frontier to be assigned as
next frontier are equally distributed: pi = p j, i, j = 1 . . . n.
In case II, it is assumed that, being at a segment si, one
frontier is more likely to be selected than the others. We
denote such frontier as dominant frontier and assume a single
dominant frontier to ease analysis. A dominant frontier may
be selected with probability pdom, the remaining frontiers are
assumed to be selected with a uniform distribution for the
sake of simplicity. The following results may be adopted
to realistic non-uniform distributions. In the example, let f1
be the dominant frontier, thus p1 = pdom, then pi =

1−pdom
n−1 ,

i = 2 . . . n.
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Fig. 3: (a) Map of a corridor with a total of S segments.
(b) The state representation in the Markov process with a
total of S segments.

D. Example Scenario: Office Corridor

We apply the model in an environment such as a corridor
in an office building. Fig. 3 illustrates the corridor’s map and
its exemplified representation in the model. We assume the
corridor to be equally segmented (illustrated by the dotted
lines). Each segment is assumed to take approximately the
same time to be explored/searched. Differences in travel costs
for various robots are considered to be comparably small
and are neglected. Segments are mapped to rooms, thus each
room Ri corresponds to a segment si in the state space of the
Markov process. The robots start out in the same segment
positioned at the very left corridor’s end and sweep to the
right.

V. The Value of Coordination

We first investigate the impact of the environment and the
perception thereof and the number of robots for various num-
ber of frontiers F. For this we omit the index t. Afterwards
we apply the model to the office corridor scenario.

A. Impact of Dominant Frontier on Coordination Gain

As mentioned before, some frontiers have in general
higher likelihoods to be explored before others (see Fig. 1d).
We determine the influence of such dominant frontiers.

Fig. 4 shows the expected coordination gain according
to (6) for different F and A. The coordination gain is
minimal if robots are uniformly distributed among available
frontiers, which is the case for pdom = 1

F . The maximum
gain is reached for pdom = 1, i.e. the uncoordinated multi-
robot system behaves like a single robot. In such cases
coordination is most useful. In conclusion, robot systems
tend to profit from coordination if the environment leads to
multiple frontiers of which one or a few are more likely to
be selected.

The authors of [4] come to similar qualitative conclusions
comparing an indoor environment to an open environment.
Robots in less structured environments tend to select the
same frontier making one or a few frontiers more prominent
than others, which prevents the robots to spatially spread. In
comparison, structured environments are less likely to con-
tain a dominant frontier allowing for implicit coordination
by design of the utility function.
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Fig. 4: Impact of dominant frontier on expected coordination
gain for a team of A robots in an environment with with F
frontiers.

B. Impact of Team Size on Coordination Gain

We evaluate the impact of the team size on possible
gains through optimal coordination. We compare multi-robot
systems with up to A = 12 robots. Fig. 5 shows the results
for various pdom.
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Fig. 5: Coordination gain for various pdom depending on
the number of robots A. Markers are connected to improve
readability.

In all cases, the gain is first strictly increasing to a max-
imum, after which it monotonically decreases. This can be
explained by the robot density d = A

F . We need to distinguish
three cases. For small robot densities (d < 1), the likelihood



for robots to select the same frontier is comparably low. With
increasingly many robots, this probability increases leading
to higher coordination gains. Once A reaches F (i.e. d = 1),
the coordination gain is maximized. In this case, each frontier
is assigned to one robot. Further increasing number of robots
(d > 1), the likelihood of frontiers left unexplored decreases,
thus decreasing the expected gain.

It can be seen that, for d < 1, the increase in gain decreases
with every additionally added robot. In case of pdom = 0.8
(see Fig. 5d), for example, adding a second robot increases
the gain from 1.0 to 1.5, while adding a seventh (for F =

8) increases the gain by only 0.2. We will discuss this in
more detail.

We determine the impact of adding additional robots to
increase the efficiency. Fig. 6 shows the expected number
of segments explored in parallel for various team sizes
and F with pdom = 1

F . With each additional robot added,
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Fig. 6: Comparison of expected number of segments explored
parallel for various number of uncoordinated type 2 robots.

the increase in efficiency for the next robot decreases. To
address the issue how many robots to add, we can compute
the number of uncoordinated robots required to achieve
comparable results to optimally coordinated ones. We assume
no dominant frontiers and homogeneous robots, thus all
frontiers are explored with equal probability independent
of the robot. It follows ~va, f is independent of a and f :
va, f = v = 1

F . We can rewrite (3) along with (2) to

E [X] = F P(X) = F
(
1 −

(
1 − 1

F

)A
)
, (7)

which can be rearranged to

A =
log(1 − γ)
log(1 − 1

F )
, where γ =

E[X]
F
≤ 1 (8)

is the ratio of the expected number of explored frontiers to
available frontiers. For γ → 1, A goes to infinity because
an unlimited number of uncoordinated robots is required for
P(X)→ 1. For example, consider γ = 0.75 and F = 4, a total
of A = d4.82e = 5 robots is required compared to 3 coordi-
nated ones. This is a lower bound. If one considers dominant
frontiers, the number of robots will increase further.

With increasing ratio γ, the number of robots required to
achieve an expected level of exploration certainty (indicated
by E[X]) increases exponentially making exploration neces-
sary without the need for a vast number of robots.

C. Impact of Dominant Frontiers and Team Size on Frontiers
Explored in Parallel

Let the random variable (RV) Ys model the number of
robots in segment s ∈ S. We denote the tuple (Y1 . . . Ys)
as a configuration and determine its probability with the
multinomial distribution

P(Y1 = y1 ∧ · · · ∧ YS = yS ) =
A!

y1! . . . yS !
py1

1 . . . pyS
S . (9)

The RV Z models the number of segments explored in
parallel in the absence of coordination, i.e. the number of
configurations in which 1 ≤ z ≤ S segments contain at least
one robot. Fig. 7 shows the resulting probabilities P(Z = z)
for F = 4. For each pdom we compare the probabilities for
robot densities d = 1, 3

2 , and 2 robots per segment. The
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Fig. 7: Probability P(z) for densities 1, 3
2 , 2 and F = 4. We

omit figures for other sets of parameters. Qualitatively they
are comparable with increasing probabilities for increasing
pdom for small s.

probabilities relate to the robot density and pdom confirming
previous results. With increasing pdom, the probability of
achieving a high γ decreases significantly. Especially for very
high pdom, the probability of exploring four segments P(z) =

4 is negligibly small. Adding additional robots increases the
probability, but with a decreasing effect for each additional
robot, especially for small pdom.

As discussed previously, E[X] is maximized if pdom = 1
F .

For F = 4 and d = 1, even in this most beneficial case
P(Z = 4) = 0.14. With a density d = 2, P(Z = 4)
can be increased to 0.67. For increasing pdom, P(Z = 4)
decreases dramatically. Therefore, coordination will become
unavoidable if all available frontiers shall be explored with
high probability at a given time.

Note that apart the underlying assumptions for this model,
all frontiers will be explored in a multi-robot exploration.
Frontiers that were not explored at time t1 will remain in the
set F(t) for t2 > t1. They will be explored at a later time,
possibly increasing the costs. If these costs are not mission
critical, it may be sufficient to have a high enough probability
P(Z) to explore frontiers.



D. Multi-robot Systems in Office Corridors
We apply our model to the exploration of an office corridor

depicted in Fig. 3 considering A = 2 and 3 robots allowing
a complete exploration for coordinated robots in one case.
Fig. 8 shows the efficiencies for the corridor environment
depicted in Fig. 3. We consider the same probabilities for
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Fig. 8: Efficiencies exploration office corridor with A = 2, 3
robots (see Fig. 3 for illustration).

pdom with two and three robots having densities d = 2
3 and

1. The cumulative efficiency θ decreases significantly for
t → ∞ requiring coordination if additional sweeps are not
feasible. The efficiency η for three uncoordinated robots lies
at η = 0.71 > 0.67, which is the achievable efficiency of a op-
timally coordinated two-robot system. Thus, expectedly three
uncoordinated robots outperform two optimally coordinated
robots for environments comparable to the office corridor.
In the case of optimally coordinated robots the cumulative
efficiency θ is 1.0 and 0.67 in case of three and two robots,
respectively. In such cases less efforts may be spend on the
coordination function while still obtaining comparable results
at slightly increased deployment costs.

It is unlikely that a whole environment consists of domi-
nant frontiers only, but at least single junctions with dominant
frontiers may occur, thus reducing the efficiency of multi-
robot systems. Note, however, that these analyses consider
expected values. In the worst case, uncoordinated multi-
robot systems may behave as single-robots, which is highly
unlikely but not impossible. In comparison, explicit coordi-
nation eliminates the possibility of the worst case to occur
increasing system efficiency in any case. Here we assume
optimal coordination to be achievable at all times. This may
not hold for scenarios where the optimal coordination cannot

be determined due to missing knowledge of yet unexplored
segments.

VI. Conclusions
There is a need for coordination in multi-robot systems,

e.g. due to different interpretations of the perception of the
environment leading to a non-deterministic order of traversed
segments. Dominant frontiers make some orders of traversed
segments more likely than others. To be able to qualitatively
and quantitatively evaluate the impact of an environment’s
characteristics on the exploration process, we proposed a
Markov process to model explorations using the transition
probabilities to consider these characteristics. The gain of
coordination mainly depends on two factors: the density of
the robots and the environment or the perception thereof.
We gave quantitative measures for these values in an office
environment. Coordination is most efficient if the number
of robots equals the average number of frontiers available.
In contrast, if the robot density is very small or large, the
small coordination gain may not justify the use of explicit
coordination in the absence of dominant frontiers.
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